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The bulk-boundary correspondence is among the central issues of non-Hermitian topological states. We show
that a previously overlooked “non-Hermitian skin effect” necessitates redefinition of topological invariants in
a generalized Brillouin zone. The resultant phase diagrams dramatically differ from the usual Bloch theory.
Specifically, we obtain the phase diagram of non-Hermitian Su-Schrieffer-Heeger model, whose topological
zero modes are determined by the non-Bloch winding number instead of the Bloch-Hamiltonian-based topolog-
ical number. Our work settles the issue of the breakdown of conventional bulk-boundary correspondence and

introduces the non-Bloch bulk-boundary correspondence.

Introduction.—Topological materials are characterized by
robust boundary states immune to perturbations[145]. Ac-
cording to the principle of bulk-boundary correspondence,
the existence of boundary states is dictated by the bulk topo-
logical invariants, which, in the band-theory framework, are
defined in terms of the Bloch Hamiltonian. The Hamil-
tonian is often assumed to be Hermitian. In many physi-
cal systems, however, non-Hermitian Hamiltonians are more
appropriate[6, [7]. For example, they are widely used in de-
scribing open systems[8-{17], wave systems with gain and
loss[118-40] (e.g. photonic and acoustic [41-44]), and solid-
state systems where electron-electron interactions or disor-
ders introduce a non-Hermitian self energy into the effec-
tive Hamiltonian of quasiparticle[45-47]. With these phys-
ical motivations, there have recently been growing efforts,
both theoretically[48-78] and experimentally[79-85], to in-
vestigate topological phenomena of non-Hermitian Hamilto-
nians.

Among the key issues is the fate of bulk-boundary cor-
respondence in non-Hermitian systems. Recently, numer-
ical results in a one-dimensional (1D) model show that
open-boundary spectra look notably different from periodic-
boundary ones, which seems to indicate a complete break-
down of bulk-boundary correspondence[49, |86]. In view of
this breakdown, a possible scenario is that the topological
edge states depend on all sample details, without any general
rule telling their existence or absence. Here, we ask the fol-
lowing questions: Is there a generalized bulk-boundary corre-
spondence? Are there bulk topological invariants responsible
for the topological edge states? Affirmative answers are ob-
tained in this paper.

We start from solving a 1D model. Interestingly, all the
eigenstates of an open chain are found to be localized near the
boundary (dubbed “non-Hermtian skin effect”), in contrast to
the extended Bloch waves in Hermitian cases. In the simplest
situations, this effect can be understood in terms of an imag-
inary gauge field[87, [88]. We show that the non-Hermitian
skin effect has dramatic consequences in establishing a “non-
Bloch bulk-boundary correspondence” in which the topologi-
cal boundary modes are determined by “non-Bloch topologi-
cal invariants”.

Previous non-Hermitian topological invariants[48-56] are

FIG. 1. Non-Hermitian SSH model. The dotted box indicates the
unit cell.

formulated in terms of the Bloch Hamiltonian. The crucial
non-Bloch-wave nature of eigenstates (non-Hermitian skin ef-
fect) is untouched, therefore, the number of topological edge
modes is not generally related to these topological invariants.
In view of the non-Hermitian skin effect, we introduce a non-
Bloch topological invariant, which faithfully determines the
number of topological edge modes. It embodies the non-
Bloch bulk-boundary correspondence of non-Hermitian sys-
tems.

Model.—The non-Hermitian Su-Schrieffer-Heeger (SSH)
model[|89][90] is pictorially shown in Fig[ll Related models
are relevant to quite a few experiments[79,182,/91]. The Bloch
Hamiltonian is

Hk) = dyory + (dy + i%)ay, )

where d, = t; + (& + 3)cosk, d, = (& — t3)sink, and oy,
are the Pauli matrices. A mathematically equivalent model
was studied in Ref. [49], where o, was replaced by o; as
such, the physical interpretation was not SSH. The model
has a chiral symmetry[3] o-z‘lH(k)(rz = —H(k), which en-
sures that the eigenvalues appear in (E, —E) pairs: E.(k) =
+4/d? + (dy + iy/2)>. Let us first take 73 = 0 for simplicity
(nonzero t3 will be included later). The energy gap closes
at the exceptional points (dy, d,) = (+y/2,0), which requires
Hh=rntnH iy/Z(kZH)Ol’ll = —lzi)//Z(kZO).

The open-boundary spectrum is noticeably different from
that of periodic boundary[49][92], which can be seen in the
numerical spectra of real-space Hamiltonian of an open chain
[Fig[2]. The zero modes are robust to perturbation [Fig2(d)],
which indicates their topological origin. A transition point
is located at #; = 1.20, which is a quite unremarkable point
from the perspective of H(k) whose spectrum is gapped there
(IE<(k)] # 0). As such, the topology of H(k) cannot determine
the zero modes, which challenges the familiar Hermitian wis-
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FIG. 2. Numerical spectra of of an open chain with length L = 40
(unit cell). # = 1, ¥y = 4/3; t; varies in [-3,3]. (a) |E| as
functions of #;. The zero-mode line is shown in red (twofold de-
generate, ignoring an indiscernible split). The true transition point

(+f t% + (y/2)? ~ 1.20) and the H(k)-gap-closing points (#, +y/2) are
indicated by arrows. (b,c) The real and imaginary parts of E. (d) The
same as (a) except that the value of #; at the leftmost bond is replaced
by #; — 0.8, which generates additional nonzero modes, but the zero
modes are unaffected.

dom. The question arises: What topological invariant predicts
the zero modes?

Shortcut solution.—To gain insights, we analytically solve
an open chain. The wavefunction is written as |¢) =
WA, 91,824,028, YA, ¥rp)’.  We first present a
shortcut, which is applicable only to the #3 = 0 case. The real-
space eigen-equation H|y) = El) is equivalent to Hly) =
El) with [ = S~'jy) and

H=S"'HS. 2

We can judiciously choose §' in this similarity transformation.
Let us take S to bea diagonal matrix whose diagonal elements
are {1,r, 7,72, 12, -+ , ¥ 1, rL71 #L), then in H we have r='(f; +

y/2) in the place of 1, +y/2 (Flgm). If we take r = 4/| j;;% |, H

becomes the standard SSH model for |¢1| > |y/2|, with intracell

and intercell hoppings

= o -yt +y/D, h=n 3)
The k-space expression is
H(k) = () + fycosk)oy + b sinkay. 4)

The transition points are f; = f,, namely

= £+ (y/2)2. 5)

For the parameters in Fig] Eq.(@) gives #; ~ +1.20. Note that
any H(k)-based topological invariants[48-56] can jump only
att) = +fp = y/2, where the gap of H(k) closes.

A bulk eigenstate |¢;) of Hermitian H is extended, there-
fore, H’s eigenstate [/;) = S|¥;) is exponentially localized at
an end of the chain when y # 0. It implies that the usual
Bloch phase factor e’ is replaced by 8 = re’* in the open-
boundary system (i.e., the wavevector acquires an imaginary
part: k — k —ilnr). Although this intuitive picture is based
on the shortcut solution, we believe that the exponential-decay
behavior of eigenstates (‘“non-Hermitian skin effect”) is a gen-
eral feature of non-Hermitian bands.

Generalizable solution.—The intuitive shortcut solution has
limitations; e.g., it is inapplicable when 73 # 0. Here, we
re-derive the solution in a more generalizable way (still focus-
ing on 3 = 0 for simplicity). The real-space eigen-equation
leads to t,_1.8 + (11 + $)Wnp = EYna and (t; — )ua +
tyne1.4 = EY, p in the bulk of chain. We take the ansatz that
ly) = X ;1¢), where each |¢”) takes the exponential form
(omitting the j index temporarily): (¢4, dn5) = B (D4, PB),
which satisfies

(11 + %) + 187 1o = Eda, [(t1 - %) + 1B)pa = Egp. (6)
Therefore, we have
[t - %) + LBl + %) +0687"] = B, %)

which has two solutions, namely [2(E) =
E2+y? [A-£—£ \[(E2+y2 |42~ )2 =412 (3 =2 [4)

CESTE , Where +(—) cor-
responds to 51(85). In the E — 0 limit, we have
— - 7/2 15}
T2 =- »— . ®)
5} n+y/2

They can also be seen from Eq.(6). These two solutions cor-
respond to ¢p = 0 and ¢4 = 0, respectively.
Restoring the j index in [¢\”), we have

E
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These two equations are equivalent because of Eq.(Z). The
general solution is written as a linear combination:
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FIG. 3. (a) |8,I-E curves from Eq.@. #, = 1 (dark color) and
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Cjg, which is a circle for the present model [by Eq.(I3)]. The shown one is for ¢; = 1. Cp can be viewed as a deformed Brillouin zone that
generalizes the usual one. In Hermitian cases, Cy is a unit circle (dashed line). (c) Profile of a zero mode (main figure) and eight randomly
chosen bulk eigenstates (inset), illustrating the “non-Hermitian skin effect” found in the analytic solution, namely, all the bulk eigenstates are
localized near the boundary. #; = 1. Common parameters: #, = 1,y = 4/3.

which should satisfy the boundary condition
(1 + %)%,B —Ey1a=0, (1 - %)'ﬁL,A —Eyp=0.(11)
Together with Eq.(@), they lead to

Tt —y/2+0p2) = BTN - y/2 + 0B).

We are concerned about the spectrum for a long chain, which
necessitates |8;| = |B>] for the bulk eigenstates. If not, suppose
that |8;] < |82, we would be able to discard the tiny ,Bf“ term
in Eq.(12), and the equation becomes 8, = 0 or 1{—y/2+58; =
0 (without the appearance of L). As a bulk-band property,
|B1(E)| = |B2(E)| remains valid in the presence of perturbations
near the edges [e.g., Figlld)], and essentially determines the
bulk-band energies[93]. Combined with 8,5, = 2 3@ coming
from Eq.([@), |81 = |8-| leads to

12)

i (13)

Bjl=r= |t1+y/2

for bulk eigenstates (i.e., eigenstates in the continuum spec-
trum). The same r has just been used in the shortcut solution.

We emphasize that r < 1 indicates that all the eigenstates
are localized at the left end of the chain [see FigB3lc) for
illustration][94][95]. In Hermitian systems, the orthogonality
of eigenstates excludes this “non-Hermitian skin effect’.

There are various ways to re-derive the transition points in
Eq.@. To introduce one of them, we first plot in Fig[3(a)
the |B-E curve solved from Eq.(@) forf; = 1, = 1,y = 4/3.
The spectrum is real for this set of parameters, therefore, no
imaginary part of E is needed (This reality is related to PT
symmetry[6, [7]). The expected |8;| = |B2] = r relation is
found on the line FG (Fig[3(a))), which is associated with bulk
spectra. As #; is increased from 1, F moves towards left, and
finally hits the |5| axis (E = 0 axis). Apparently, it occurs
when |8570] = |8570] = r. Inserting Eq.(8) into this equation,
we have

(14)

At these points, the open-boundary continuum spectra touch
zero energy, enabling topological transitions.

A simpler way to re-derive Eq.(d) is to calculate the open-
boundary spectra. According to Eq.(I3), we can take 8 = re'
(k € [0,2n]) in Eq.(@) to obtain the spectra:

EX(k) =22 + £ = y* /4 + 1 (I = y2/H[sgn(ty +y/2)e*
+sgn(t; —y/2)e ], (15)

which recovers the spectrum of SSH model when y = 0. The
spectra are real when |t > |y|/2. Eq.(I4) can be readily re-
derived as the gap-closing condition of Eq.(13) (|E(k)| = 0).
Before proceeding, we comment on a subtle issue in the
standard method of finding zero modes. For concreteness, let
us consider the present model, and focus on zero modes at
the left end of a long chain. One can see that [**™) with
W ¥ng) = (ﬂfﬁo)”(l, 0) appears as a zero-energy eigen-
state (see Eq.(8) for ﬁf"o). In the standard approach, the nor-
malizable condition Wf*0| < 1 is imposed, and the transi-
tion points satisfy LB‘IEHO| = 1, which predicts t; = #, + y/2
as a transition point, being consistent with the gap closing of
H(k). Such an apparent but misleading consistency has hidden
the true transition points and topological invariants in quite a
few previous studies of non-Hermitian models. The implicit
assumption was that the bulk eigenstates are extended Bloch
waves with |8| = 1, into which the zero modes merge at tran-
sitions. In reality, the bulk eigenstates have |8| = r (eigenstate
skin effect); therefore, the true merging-into-bulk condition is

BE0 = r, (16)

\JB + (y/2)?. This is a mani-
festation of the non-Bloch bulk-boundary correspondence.
Non-Bloch topological invariant.—The bulk-boundary cor-
respondence is fulfilled if we can find a bulk topological in-
variant that determines the edge modes. Previous construc-
tions take H(k) as the starting point[48-56], which should be
revised in view of the non-Hermitian skin effect. The usual
Bloch waves carry a pure phase factor e, whose role is now

which correctly produces #; =
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FIG. 4. Numerical result of topological invariant. Np is the number
of grid point on Cy. 1, = 1,y = 4/3.

played by . In addition to the phase factor, 8 has a modulus
|8l # 1 in general [e.g., Eq.(I3)]. Therefore, we start from the
“non-Bloch Hamiltonian” obtained from H(k) by the replace-
ment e* — B, e7* — g1

HEB) = (=2 +po_+ @+ 2+ o, (D)

where o, = (0, +i0,)/2. We have taken 13 = O for simplicity.
As explained in both the shortcut and generalizable solutions,
B takes values in a non-unit circle |8 = r (In other words, k
acquires an imaginary part —i In r). It is notable that the open-
boundary spectra in Eq.(I3) are given by H(B) instead of H(k).
The right and left eigenvectors are defined by

HP)lug) = E@lur), H'Blur) = E*Blu).  (18)

Chiral symmetry ensures that |iir) = o |ug) and i) = o |ur)
is also right and left eigenvector, with eigenvalues —E and
—E*, respectively. In fact, one can diagonalize the matrix as

H(pB) = TJT ! with J = (E —E)’ then each column of T

and (T~")" is a right and left eigenvector, respectively, and
the normalization condition {uy |ug) = (i |ig) = 1, {urliir) =
(fip lur) = 0 is guaranteed. As a generalization of the usual “Q
matrix”[3], we define

OB) = lur(B)XaL(B)] = lur (B) )X uL(B), 19)

which is off-diagonal due to the chiral symmetry O';lQO'Z =

—Q, namely Q = (q‘l q). Now we introduce the non-Bloch

winding number:

i
W=— | ¢ldg.
2 j;p N 20

Crucially, it is defined on the “generalized Brillouin zone” Cg
[Fig[B3(b)]. It is useful to mention that the conventional for-
mulations using H(k) may sometimes produce correct phase
diagrams, if Cg happens to be a unit circle[96].

The numerical results for 73 = 0 is shown in Figd]
which is consistent with the analytical spectra obtained
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FIG. 5. The nonzero t; case. (a) Upper panel: Spectrum of an
open chain; t, = 1,y = 4/3,1; = 1/5; L = 100. Lower panel:
topological invariant calculated using 200 grid points on Cg. The
transition points are #; = +1.56. (b) Cg for #; = 1.1.

above. Quantitatively, 2W counts the total number of ro-
bust zero modes at the left and right ends. For example,
corresponding to Figl2l there are two zero modes for t; €

= \/tg +(v/2)%, \/tg + (y/2)?], and none elsewhere. The an-

alytic solution shows that, for [, — y/2, ,/t% + (y/2)?], both

modes live at the left end; for [-1,+7y/2, t,—y/2], one for each

end; and for [— /t% + (y/2)?, —t> + y/2], both at the right end.
Thus, the H(k)-gap closing points (¢, — y/2) are where zero
modes migrate from one end to the other, conserving the total
mode number. In fact, one can see I,B’]?:grzl =1at +(t, —v/2),
indicating the penetration into bulk.

To provide a more generic exemplification, we take a
nonzero 3. Now we find[93] that Cg is no longer a circle (bulk
eigenstates with different energies have different |8]), yet 2W
correctly predicts the total zero-mode number (Fig[3).

Finally, we remarked that Eq.(20) can be generalized to
multi-band systems. Each pair of bands (labeled by /) pos-
sesses a C/(j,l) curve, and the Q matrix [Eq.(I9)] becomes Q*,

each one defining a winding number W (with matrix trace).
The topological invariant is W = 3, W,
Conclusions.—Through the analytic solution of non-
Hermitian SSH model, we explained why the usual bulk-
boundary correspondence breaks down, and how the non-
Bloch bulk-boundary correspondence takes its place. Two of
the key concepts are the non-Hermitian skin effect and gen-
eralized Brillouin zone. We formulate the generalized bulk-
boundary correspondence by introducing a precise topological



invariant that faithfully predicts the topological edge modes.
The physics presented here can be generalized to a rich va-
riety of non-Hermitian systems, which will be left for future
studies.
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Supplemental Material

Two supplemental figures.—As explained in the main arti-
cle, the equation |8;(E)| = |B2(E)| determines the bulk-band
energies [see the discussion below Eq. (12) in the main arti-
cle]. In fact, in the complex E plane, |3;(E)| = |82(E)| deter-
mines one-dimensional curves containing the bulk-band ener-
gies. Figlflillustrates calculating bulk-band energies by solv-
ing |B1(E)| = |B2(E)| for three values of 7.

Fig[7] shows the energies and topological invariant for the
parameter regime |f,| < |y/2| (In the main article, we have
focused on || > |y/2]).

Im(E Im(E)
t;=0.2 t =02
0.4 Theory 04 L=120
0.2 0.2
0.0 0.0
-0.2 -0.2
-04 -0.4
-0.6 -0.6
Re(E) Re(E)
-1.0 -0.5 0.0 0.5 10  -1.0 -0.5 0.0 0.5 1.0
Im(E Im(E
fT1h= 06 t=06
0.2 eory 0.2 L=120
0.1 0.1
0.0 0.0
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3
Re(E) Re(E)
-1.0 -0.5 0.0 0.5 10  -10 -0.5 0.0 0.5 1.0
Im(E Im(E)
=10 t;=1.0
Theory L=120
0.1 0.1
0.0 0.0
-0.1 -0.1
_02 Re®) | oo Re(E)

-15-1.0-05 0.0 05 1.0 15 -15-10-05 0.0 05 10 15

FIG. 6. Left panels: Energies (E) solved from |8,(E)| = |8,(E)| [see
the discussion below Eq.(12) in the main article]; Right panels: Nu-
merical eigenenergies of open chains with length L = 120. Common
parameters are t, = 1,y = 4/3.

Nonzero t3.—Let us outline the calculation of generalized
Brillouin zone Cg for nonzero 3. We consider an open-
boundary chain with length L. In the bulk, the real-space
eigenequations are ty,—; p + (¢ + %)%,B + 63018 = EYna
and 130,14 + (1) — %)lﬂnA + toui1.4 = E, p. Similar to Eq.

t=Vt5 +(7/2)*

-3 -2 1 0 1 2 3
ty

FIG. 7. (a) The modulus of energy for an open chain with length
L = 40. (b) Numerical results of the topological invariant. #, =
1.0, = 2.4. According to the analytical solution, in the regime
|f2] < |yl/2, there are four transition points #; = + ,Iit% + (y/2)%
The theory is consistent with the numerical results. The topological
invariant correctly predicts the number of zero modes.

(6) of the main article, we now have
[ + (01 + 2) + 18105 = Eda,

1 y 2n
(187 + (1 = 2) + 1Blds = E¢s.

Therefore, § and E satisfy

E? = [0 + (11 +7/2) + Bl87" + (11 = 7/2) + 1.
(22)
As a quartic equation of g, it has four roots B;(E) (j =
1,2,3,4). As explained in the main article, the bulk-band en-
ergies have to satisfy |6;(E)| = |8;(E)| for a pair of i, j. In fact,
this equation can also be intuitively understood as follows.
Suppose that a wave with 8; propagates from the left end to-
wards the right. It hits the right end and gets reflected, and the
reflected waves with 5; propagates back to the left end. To sat-
isfy certain standing-wave conditions for an energy eigenstate,
the magnitudes of the initial and the final waves have to be of
the same order, therefore, one must have |3:(E)|* ~ |3;(E)I" or
|Bi(E)l = |8;(E)|. Each equation |5;(E)| = |8;(E)| determines
a one-dimensional curve in the complex E plane, and the 8
curve follows from the E curves.
There is also a more brute-force approach to find the Cg
curve. One can numerically solve the eigen-energies of an



open chain, and then find 8;(E)’s from Eq. @2). In this
calculations, one has to discard B;(E),8;(E) that do not sat-
isfy |B;(E)| = |B;(E)|, as they should not be regarded as bulk
components of the eigenstates. This disposal is similar to the
Hermitian case: A typical eigenstate of an open chain is a

superposition of right-propagating and left-propagating Bloch
waves (both have |8| = 1) and certain decaying components
localized at the two ends. The (Hermitian) topological invari-
ants are defined in terms of the bulk components, namely the
Bloch waves.



