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Edge states and topological invariants of non-Hermitian systems
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The bulk-boundary correspondence is among the central issues of non-Hermitian topological states. We show

that a previously overlooked “non-Hermitian skin effect” necessitates redefinition of topological invariants in

a generalized Brillouin zone. The resultant phase diagrams dramatically differ from the usual Bloch theory.

Specifically, we obtain the phase diagram of non-Hermitian Su-Schrieffer-Heeger model, whose topological

zero modes are determined by the non-Bloch winding number instead of the Bloch-Hamiltonian-based topolog-

ical number. Our work settles the issue of the breakdown of conventional bulk-boundary correspondence and

introduces the non-Bloch bulk-boundary correspondence.

Introduction.–Topological materials are characterized by

robust boundary states immune to perturbations[1–5]. Ac-

cording to the principle of bulk-boundary correspondence,

the existence of boundary states is dictated by the bulk topo-

logical invariants, which, in the band-theory framework, are

defined in terms of the Bloch Hamiltonian. The Hamil-

tonian is often assumed to be Hermitian. In many physi-

cal systems, however, non-Hermitian Hamiltonians are more

appropriate[6, 7]. For example, they are widely used in de-

scribing open systems[8–17], wave systems with gain and

loss[18–40] (e.g. photonic and acoustic [41–44]), and solid-

state systems where electron-electron interactions or disor-

ders introduce a non-Hermitian self energy into the effec-

tive Hamiltonian of quasiparticle[45–47]. With these phys-

ical motivations, there have recently been growing efforts,

both theoretically[48–78] and experimentally[79–85], to in-

vestigate topological phenomena of non-Hermitian Hamilto-

nians.

Among the key issues is the fate of bulk-boundary cor-

respondence in non-Hermitian systems. Recently, numer-

ical results in a one-dimensional (1D) model show that

open-boundary spectra look notably different from periodic-

boundary ones, which seems to indicate a complete break-

down of bulk-boundary correspondence[49, 86]. In view of

this breakdown, a possible scenario is that the topological

edge states depend on all sample details, without any general

rule telling their existence or absence. Here, we ask the fol-

lowing questions: Is there a generalized bulk-boundary corre-

spondence? Are there bulk topological invariants responsible

for the topological edge states? Affirmative answers are ob-

tained in this paper.

We start from solving a 1D model. Interestingly, all the

eigenstates of an open chain are found to be localized near the

boundary (dubbed “non-Hermtian skin effect”), in contrast to

the extended Bloch waves in Hermitian cases. In the simplest

situations, this effect can be understood in terms of an imag-

inary gauge field[87, 88]. We show that the non-Hermitian

skin effect has dramatic consequences in establishing a “non-

Bloch bulk-boundary correspondence” in which the topologi-

cal boundary modes are determined by “non-Bloch topologi-

cal invariants”.

Previous non-Hermitian topological invariants[48–56] are

FIG. 1. Non-Hermitian SSH model. The dotted box indicates the

unit cell.

formulated in terms of the Bloch Hamiltonian. The crucial

non-Bloch-wave nature of eigenstates (non-Hermitian skin ef-

fect) is untouched, therefore, the number of topological edge

modes is not generally related to these topological invariants.

In view of the non-Hermitian skin effect, we introduce a non-

Bloch topological invariant, which faithfully determines the

number of topological edge modes. It embodies the non-

Bloch bulk-boundary correspondence of non-Hermitian sys-

tems.

Model.–The non-Hermitian Su-Schrieffer-Heeger (SSH)

model[89][90] is pictorially shown in Fig.1. Related models

are relevant to quite a few experiments[79, 82, 91]. The Bloch

Hamiltonian is

H(k) = dxσx + (dy + i
γ

2
)σy, (1)

where dx = t1 + (t2 + t3) cos k, dy = (t2 − t3) sin k, and σx,y

are the Pauli matrices. A mathematically equivalent model

was studied in Ref. [49], where σy was replaced by σz; as

such, the physical interpretation was not SSH. The model

has a chiral symmetry[3] σ−1
z H(k)σz = −H(k), which en-

sures that the eigenvalues appear in (E,−E) pairs: E±(k) =

±
√

d2
x + (dy + iγ/2)2. Let us first take t3 = 0 for simplicity

(nonzero t3 will be included later). The energy gap closes

at the exceptional points (dx, dy) = (±γ/2, 0), which requires

t1 = t2 ± γ/2 (k = π) or t1 = −t2 ± γ/2 (k = 0).

The open-boundary spectrum is noticeably different from

that of periodic boundary[49][92], which can be seen in the

numerical spectra of real-space Hamiltonian of an open chain

[Fig.2]. The zero modes are robust to perturbation [Fig.2(d)],

which indicates their topological origin. A transition point

is located at t1 ≈ 1.20, which is a quite unremarkable point

from the perspective of H(k) whose spectrum is gapped there

(|E±(k)| , 0). As such, the topology of H(k) cannot determine

the zero modes, which challenges the familiar Hermitian wis-

http://arxiv.org/abs/1803.01876v2
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FIG. 2. Numerical spectra of of an open chain with length L = 40

(unit cell). t2 = 1, γ = 4/3; t1 varies in [−3, 3]. (a) |E| as

functions of t1. The zero-mode line is shown in red (twofold de-

generate, ignoring an indiscernible split). The true transition point

(

√

t2
2
+ (γ/2)2 ≈ 1.20) and the H(k)-gap-closing points (t2 ± γ/2) are

indicated by arrows. (b,c) The real and imaginary parts of E. (d) The

same as (a) except that the value of t1 at the leftmost bond is replaced

by t1 − 0.8, which generates additional nonzero modes, but the zero

modes are unaffected.

dom. The question arises: What topological invariant predicts

the zero modes?

Shortcut solution.–To gain insights, we analytically solve

an open chain. The wavefunction is written as |ψ〉 =
(ψ1,A, ψ1,B, ψ2,A, ψ2,B, · · · , ψL,A, ψL,B)T . We first present a

shortcut, which is applicable only to the t3 = 0 case. The real-

space eigen-equation H|ψ〉 = E|ψ〉 is equivalent to H̄|ψ̄〉 =
E|ψ̄〉 with |ψ̄〉 = S −1|ψ〉 and

H̄ = S −1HS . (2)

We can judiciously choose S in this similarity transformation.

Let us take S to be a diagonal matrix whose diagonal elements

are {1, r, r, r2, r2, · · · , rL−1, rL−1, rL}, then in H̄ we have r±1(t1±
γ/2) in the place of t1±γ/2 (Fig.1). If we take r =

√

| t1−γ/2
t1+γ/2

|, H̄

becomes the standard SSH model for |t1| > |γ/2|, with intracell

and intercell hoppings

t̄1 =
√

(t1 − γ/2)(t1 + γ/2), t̄2 = t2. (3)

The k-space expression is

H̄(k) = (t̄1 + t̄2 cos k)σx + t̄2 sin kσy. (4)

The transition points are t̄1 = t̄2, namely

t1 = ±
√

t2
2
+ (γ/2)2. (5)

For the parameters in Fig.2, Eq.(5) gives t1 ≈ ±1.20. Note that

any H(k)-based topological invariants[48–56] can jump only

at t1 = ±t2 ± γ/2, where the gap of H(k) closes.

A bulk eigenstate |ψ̄l〉 of Hermitian H̄ is extended, there-

fore, H’s eigenstate |ψl〉 = S |ψ̄l〉 is exponentially localized at

an end of the chain when γ , 0. It implies that the usual

Bloch phase factor eik is replaced by β ≡ reik in the open-

boundary system (i.e., the wavevector acquires an imaginary

part: k → k − i ln r). Although this intuitive picture is based

on the shortcut solution, we believe that the exponential-decay

behavior of eigenstates (“non-Hermitian skin effect”) is a gen-

eral feature of non-Hermitian bands.

Generalizable solution.–The intuitive shortcut solution has

limitations; e.g., it is inapplicable when t3 , 0. Here, we

re-derive the solution in a more generalizable way (still focus-

ing on t3 = 0 for simplicity). The real-space eigen-equation

leads to t2ψn−1,B + (t1 +
γ

2
)ψn,B = Eψn,A and (t1 − γ

2
)ψn,A +

t2ψn+1,A = Eψn,B in the bulk of chain. We take the ansatz that

|ψ〉 =
∑

j |φ( j)〉, where each |φ( j)〉 takes the exponential form

(omitting the j index temporarily): (φn,A, φn,B) = βn(φA, φB),

which satisfies

[(t1 +
γ

2
) + t2β

−1]φB = EφA, [(t1 −
γ

2
) + t2β]φA = EφB. (6)

Therefore, we have

[(t1 −
γ

2
) + t2β][(t1 +

γ

2
) + t2β

−1] = E2, (7)

which has two solutions, namely β1,2(E) =

E2
+γ2/4−t2

1
−t2

2
±
√

(E2+γ2/4−t2
1
−t2

2
)2−4t2

2
(t2

1
−γ2/4)

2t2(t1+γ/2)
, where +(−) cor-

responds to β1(β2). In the E → 0 limit, we have

βE→0
1,2 = −

t1 − γ/2
t2

, −
t2

t1 + γ/2
. (8)

They can also be seen from Eq.(6). These two solutions cor-

respond to φB = 0 and φA = 0, respectively.

Restoring the j index in |φ( j)〉, we have

φ
( j)

A
=

E

t1 − γ/2 + t2β j

φ
( j)

B
, φ

( j)

B
=

E

t1 + γ/2 + t2β
−1
j

φ
( j)

A
. (9)

These two equations are equivalent because of Eq.(7). The

general solution is written as a linear combination:

(

ψn,A

ψn,B

)

= βn
1

(

φ
(1)

A

φ
(1)

B

)

+ βn
2

(

φ
(2)

A

φ
(2)

B

)

, (10)
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FIG. 3. (a) |β j|-E curves from Eq.(7). t1 = 1 (dark color) and

√

t2
2
+ (γ/2)2 ≈ 1.20 (light color). (b) Complex-valued β j’s form a closed loop

Cβ, which is a circle for the present model [by Eq.(13)]. The shown one is for t1 = 1. Cβ can be viewed as a deformed Brillouin zone that

generalizes the usual one. In Hermitian cases, Cβ is a unit circle (dashed line). (c) Profile of a zero mode (main figure) and eight randomly

chosen bulk eigenstates (inset), illustrating the “non-Hermitian skin effect” found in the analytic solution, namely, all the bulk eigenstates are

localized near the boundary. t1 = 1. Common parameters: t2 = 1, γ = 4/3.

which should satisfy the boundary condition

(t1 +
γ

2
)ψ1,B − Eψ1,A = 0, (t1 −

γ

2
)ψL,A − EψL,B = 0. (11)

Together with Eq.(9), they lead to

βL+1
1 (t1 − γ/2 + t2β2) = βL+1

2 (t1 − γ/2 + t2β1). (12)

We are concerned about the spectrum for a long chain, which

necessitates |β1| = |β2| for the bulk eigenstates. If not, suppose

that |β1| < |β2|, we would be able to discard the tiny βL+1
1

term

in Eq.(12), and the equation becomes β2 = 0 or t1−γ/2+t2β1 =

0 (without the appearance of L). As a bulk-band property,

|β1(E)| = |β2(E)| remains valid in the presence of perturbations

near the edges [e.g., Fig.2(d)], and essentially determines the

bulk-band energies[93]. Combined with β1β2 =
t1−γ/2
t1+γ/2

coming

from Eq.(7), |β1| = |β2| leads to

|β j| = r ≡

√

| t1 − γ/2
t1 + γ/2

| (13)

for bulk eigenstates (i.e., eigenstates in the continuum spec-

trum). The same r has just been used in the shortcut solution.

We emphasize that r < 1 indicates that all the eigenstates

are localized at the left end of the chain [see Fig.3(c) for

illustration][94][95]. In Hermitian systems, the orthogonality

of eigenstates excludes this “non-Hermitian skin effect’.

There are various ways to re-derive the transition points in

Eq.(5). To introduce one of them, we first plot in Fig.3(a)

the |β|-E curve solved from Eq.(7) for t1 = t2 = 1, γ = 4/3.

The spectrum is real for this set of parameters, therefore, no

imaginary part of E is needed (This reality is related to PT

symmetry[6, 7]). The expected |β1| = |β2| = r relation is

found on the line FG (Fig.3(a))), which is associated with bulk

spectra. As t1 is increased from 1, F moves towards left, and

finally hits the |β| axis (E = 0 axis). Apparently, it occurs

when |βE→0
1
| = |βE→0

2
| = r. Inserting Eq.(8) into this equation,

we have

t1 = ±
√

t2
2
+ (γ/2)2 or ±

√

−t2
2
+ (γ/2)2. (14)

At these points, the open-boundary continuum spectra touch

zero energy, enabling topological transitions.

A simpler way to re-derive Eq.(5) is to calculate the open-

boundary spectra. According to Eq.(13), we can take β = reik

(k ∈ [0, 2π]) in Eq.(7) to obtain the spectra:

E2(k) =t2
1 + t2

2 − γ
2/4 + t2

√

|t2
1
− γ2/4|[sgn(t1 + γ/2)eik

+sgn(t1 − γ/2)e−ik], (15)

which recovers the spectrum of SSH model when γ = 0. The

spectra are real when |t1| > |γ|/2. Eq.(14) can be readily re-

derived as the gap-closing condition of Eq.(15) (|E(k)| = 0).

Before proceeding, we comment on a subtle issue in the

standard method of finding zero modes. For concreteness, let

us consider the present model, and focus on zero modes at

the left end of a long chain. One can see that |ψzero〉 with

(ψzero
n,A

, ψzero
n,B

) = (βE→0
1

)n(1, 0) appears as a zero-energy eigen-

state (see Eq.(8) for βE→0
1

). In the standard approach, the nor-

malizable condition |βE→0
1
| < 1 is imposed, and the transi-

tion points satisfy |βE→0
1
| = 1, which predicts t1 = t2 + γ/2

as a transition point, being consistent with the gap closing of

H(k). Such an apparent but misleading consistency has hidden

the true transition points and topological invariants in quite a

few previous studies of non-Hermitian models. The implicit

assumption was that the bulk eigenstates are extended Bloch

waves with |β| = 1, into which the zero modes merge at tran-

sitions. In reality, the bulk eigenstates have |β| = r (eigenstate

skin effect); therefore, the true merging-into-bulk condition is

|βE→0
1 | = r, (16)

which correctly produces t1 =

√

t2
2
+ (γ/2)2. This is a mani-

festation of the non-Bloch bulk-boundary correspondence.

Non-Bloch topological invariant.–The bulk-boundary cor-

respondence is fulfilled if we can find a bulk topological in-

variant that determines the edge modes. Previous construc-

tions take H(k) as the starting point[48–56], which should be

revised in view of the non-Hermitian skin effect. The usual

Bloch waves carry a pure phase factor eik, whose role is now
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FIG. 4. Numerical result of topological invariant. Nβ is the number

of grid point on Cβ. t2 = 1, γ = 4/3.

played by β. In addition to the phase factor, β has a modulus

|β| , 1 in general [e.g., Eq.(13)]. Therefore, we start from the

“non-Bloch Hamiltonian” obtained from H(k) by the replace-

ment eik → β, e−ik → β−1:

H(β) = (t1 −
γ

2
+ βt2)σ− + (t1 +

γ

2
+ β−1t2)σ+, (17)

where σ± = (σx± iσy)/2. We have taken t3 = 0 for simplicity.

As explained in both the shortcut and generalizable solutions,

β takes values in a non-unit circle |β| = r (In other words, k

acquires an imaginary part −i ln r). It is notable that the open-

boundary spectra in Eq.(15) are given by H(β) instead of H(k).

The right and left eigenvectors are defined by

H(β)|uR〉 = E(β)|uR〉, H†(β)|uL〉 = E∗(β)|uL〉. (18)

Chiral symmetry ensures that |ũR〉 ≡ σz|uR〉 and |ũL〉 ≡ σz|uL〉
is also right and left eigenvector, with eigenvalues −E and

−E∗, respectively. In fact, one can diagonalize the matrix as

H(β) = T JT−1 with J =

(

E

−E

)

, then each column of T

and (T−1)† is a right and left eigenvector, respectively, and

the normalization condition 〈uL|uR〉 = 〈ũL|ũR〉 = 1, 〈uL|ũR〉 =
〈ũL|uR〉 = 0 is guaranteed. As a generalization of the usual “Q

matrix”[3], we define

Q(β) = |ũR(β)〉〈ũL(β)| − |uR(β)〉〈uL(β)|, (19)

which is off-diagonal due to the chiral symmetry σ−1
z Qσz =

−Q, namely Q =

(

q

q−1

)

. Now we introduce the non-Bloch

winding number:

W =
i

2π

∫

Cβ

q−1dq. (20)

Crucially, it is defined on the “generalized Brillouin zone” Cβ

[Fig.3(b)]. It is useful to mention that the conventional for-

mulations using H(k) may sometimes produce correct phase

diagrams, if Cβ happens to be a unit circle[96].

The numerical results for t3 = 0 is shown in Fig.4,

which is consistent with the analytical spectra obtained

0

2
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FIG. 5. The nonzero t3 case. (a) Upper panel: Spectrum of an

open chain; t2 = 1, γ = 4/3, t3 = 1/5; L = 100. Lower panel:

topological invariant calculated using 200 grid points on Cβ. The

transition points are t1 ≈ ±1.56. (b) Cβ for t1 = 1.1.

above. Quantitatively, 2W counts the total number of ro-

bust zero modes at the left and right ends. For example,

corresponding to Fig.2, there are two zero modes for t1 ∈
[−

√

t2
2
+ (γ/2)2,

√

t2
2
+ (γ/2)2], and none elsewhere. The an-

alytic solution shows that, for [t2 − γ/2,
√

t2
2
+ (γ/2)2], both

modes live at the left end; for [−t2+γ/2, t2−γ/2], one for each

end; and for [−
√

t2
2
+ (γ/2)2,−t2 + γ/2], both at the right end.

Thus, the H(k)-gap closing points ±(t2 − γ/2) are where zero

modes migrate from one end to the other, conserving the total

mode number. In fact, one can see |βE→0
j=1 or 2

| = 1 at ±(t2 − γ/2),

indicating the penetration into bulk.

To provide a more generic exemplification, we take a

nonzero t3. Now we find[93] that Cβ is no longer a circle (bulk

eigenstates with different energies have different |β|), yet 2W

correctly predicts the total zero-mode number (Fig.5).

Finally, we remarked that Eq.(20) can be generalized to

multi-band systems. Each pair of bands (labeled by l) pos-

sesses a C
(l)

β
curve, and the Q matrix [Eq.(19)] becomes Q(l),

each one defining a winding number W (l) (with matrix trace).

The topological invariant is W =
∑

l W (l).

Conclusions.–Through the analytic solution of non-

Hermitian SSH model, we explained why the usual bulk-

boundary correspondence breaks down, and how the non-

Bloch bulk-boundary correspondence takes its place. Two of

the key concepts are the non-Hermitian skin effect and gen-

eralized Brillouin zone. We formulate the generalized bulk-

boundary correspondence by introducing a precise topological
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invariant that faithfully predicts the topological edge modes.

The physics presented here can be generalized to a rich va-

riety of non-Hermitian systems, which will be left for future

studies.
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Supplemental Material

Two supplemental figures.–As explained in the main arti-

cle, the equation |β1(E)| = |β2(E)| determines the bulk-band

energies [see the discussion below Eq. (12) in the main arti-

cle]. In fact, in the complex E plane, |β1(E)| = |β2(E)| deter-

mines one-dimensional curves containing the bulk-band ener-

gies. Fig.6 illustrates calculating bulk-band energies by solv-

ing |β1(E)| = |β2(E)| for three values of t1.

Fig.7 shows the energies and topological invariant for the

parameter regime |t2| < |γ/2| (In the main article, we have

focused on |t2| > |γ/2|).
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-1.0 -0.5 0.0 0.5 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

Im(E)

Re(E)

t1 = 0.2
L = 120

-1.0 -0.5 0.0 0.5 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

Im(E)

Re(E)

Theory

t1 = 0.6

-1.0 -0.5 0.0 0.5 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

Im(E)

Re(E)

t1 = 0.6
L = 120

-1.0 -0.5 0.0 0.5 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

Im(E)

Re(E)

t1 = 1.0

Theory

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.2

-0.1

0.0

0.1

Im(E)

Re(E)

t1 = 1.0

L = 120

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.2

-0.1

0.0

0.1

Im(E)

Re(E)

FIG. 6. Left panels: Energies (E) solved from |β1(E)| = |β2(E)| [see

the discussion below Eq.(12) in the main article]; Right panels: Nu-

merical eigenenergies of open chains with length L = 120. Common

parameters are t2 = 1, γ = 4/3.

Nonzero t3.–Let us outline the calculation of generalized

Brillouin zone Cβ for nonzero t3. We consider an open-

boundary chain with length L. In the bulk, the real-space

eigenequations are t2ψn−1,B + (t1 +
γ

2
)ψn,B + t3ψn+1,B = Eψn,A

and t3ψn−1,A + (t1 − γ

2
)ψn,A + t2ψn+1,A = Eψn,B. Similar to Eq.

-3 -2 -1 0 1 2 3

0

1

2

3

(b)

FIG. 7. (a) The modulus of energy for an open chain with length

L = 40. (b) Numerical results of the topological invariant. t2 =

1.0, γ = 2.4. According to the analytical solution, in the regime

|t2| < |γ|/2, there are four transition points t1 = ±
√

±t2
2
+ (γ/2)2.

The theory is consistent with the numerical results. The topological

invariant correctly predicts the number of zero modes.

(6) of the main article, we now have

[t2β
−1
+ (t1 +

γ

2
) + t3β]φB = EφA,

[t3β
−1
+ (t1 −

γ

2
) + t2β]φA = EφB.

(21)

Therefore, β and E satisfy

E2
= [t2β

−1
+ (t1 + γ/2) + t3β][t3β

−1
+ (t1 − γ/2) + t2β].

(22)

As a quartic equation of β, it has four roots β j(E) ( j =

1, 2, 3, 4). As explained in the main article, the bulk-band en-

ergies have to satisfy |βi(E)| = |β j(E)| for a pair of i, j. In fact,

this equation can also be intuitively understood as follows.

Suppose that a wave with βi propagates from the left end to-

wards the right. It hits the right end and gets reflected, and the

reflected waves with β j propagates back to the left end. To sat-

isfy certain standing-wave conditions for an energy eigenstate,

the magnitudes of the initial and the final waves have to be of

the same order, therefore, one must have |βi(E)|L ∼ |β j(E)|L or

|βi(E)| = |β j(E)|. Each equation |βi(E)| = |β j(E)| determines

a one-dimensional curve in the complex E plane, and the β

curve follows from the E curves.

There is also a more brute-force approach to find the Cβ

curve. One can numerically solve the eigen-energies of an



9

open chain, and then find β j(E)’s from Eq. (22). In this

calculations, one has to discard βi(E), β j(E) that do not sat-

isfy |βi(E)| = |β j(E)|, as they should not be regarded as bulk

components of the eigenstates. This disposal is similar to the

Hermitian case: A typical eigenstate of an open chain is a

superposition of right-propagating and left-propagating Bloch

waves (both have |β| = 1) and certain decaying components

localized at the two ends. The (Hermitian) topological invari-

ants are defined in terms of the bulk components, namely the

Bloch waves.


