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The current understanding of the role of topology in non-Hermitian (NH) systems and
its far-reaching physical consequences observable in a range of dissipative settings are
reviewed. In particular, how the paramount and genuinely NH concept of exceptional
degeneracies, at which both eigenvalues and eigenvectors coalesce, leads to phenom-
ena drastically distinct from the familiar Hermitian realm is discussed. An immediate
consequence is the ubiquitous occurrence of nodal NH topological phases with concomi-
tant open Fermi-Seifert surfaces, where conventional band-touching points are replaced
by the aforementioned exceptional degeneracies. Furthermore, new notions of gapped
phases including topological phases in single-band systems are detailed, and the manner
in which a given physical context may affect the symmetry-based topological classifi-
cation is clarified. A unique property of NH systems with relevance beyond the field
of topological phases consists of the anomalous relation between bulk and boundary
physics, stemming from the striking sensitivity of NH matrices to boundary conditions.
Unifying several complementary insights recently reported in this context, a picture of
intriguing phenomena such as the NH bulk-boundary correspondence and the NH skin
effect is put together. Finally, applications of NH topology in both classical systems
including optical setups with gain and loss, electric circuits,s and mechanical systems
and genuine quantum systems such as electronic transport settings at material junctions
and dissipative cold-atom setups are reviewed.
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I. INTRODUCTION

One of the basic axioms of quantum mechanics re-
quires observables, such as the Hamiltonian of a closed
system, to be self-adjoint operators, which are typically
represented by Hermitian matrices. Real physical sys-
tems, however, are at least to some extent coupled to
their environment, where the presence of dissipative pro-
cesses renders their description more complex: In gen-
eral, the familiar Schrodinger equation with a Hermi-
tian Hamiltonian there is replaced by a Liouvillian su-
peroperator governing the time evolution of the den-
sity matrix (Breuer and Petruccione, 2002). In certain
regimes, such open systems in contact with an environ-
ment can be accurately described by approaches such as
Lindblad quantum master equations (Lindblad, 1976),
Feynman-Vernon theory (Feynman and Vernon, 1963),
and the Keldysh formalism (Keldysh, 1965). While
immensely powerful, the technical complexity of these
methods severely limits the range of systems that can be
efficiently studied. Effective non-Hermitian (NH) Hamil-
tonians provide a conceptually simpler and intuitive al-
ternative to fully microscopic approaches, and have al-
ready led to profound insights with applications. The
spectrum of physical platforms ranges from classical sys-
tems, including optical settings, electrical circuits, and
mechanical systems, which may be mapped to an effec-
tive NH Schrédinger equation, all the way to quantum
materials (Bender, 2007; Datta, 2005; El-Ganainy et al.,
2018; Miri and Alu, 2019; Ozawa et al., 2019; Rotter,
2009).

In a wider historical context, effective NH concepts
have been ubiquitous for many decades (Berry, 2004;
Berry and O’Dell, 1998; Brouwer et al., 1997; Efetov,
1997a,b; Hatano and Nelson, 1996, 1997; Kato, 1966;
Majorana, 1931a; Pancharatnam, 1955; Silvestrov, 1998,
1999) for example for describing resonances and broaden-
ing in scattering problems in atomic and particle physics,
as well as in nuclear reactions (Breit and Wigner, 1936;
Fano, 1961; Feshbach, 1958; Feshbach et al., 1954; Ma-
jorana, 1931a,b), all the way to applications in biolog-
ical systems (Lubensky and Nelson, 2000; Nelson and
Shnerb, 1998). Following the seminal insight that NH
Hamiltonians preserving the combination of parity and
time-reversal (PT) symmetry stably feature real spectra
(Bender, 2007; Bender and Boettcher, 1998), relinquish-
ing the assumption of Hermiticity has even been consid-
ered a fundamental amendment to quantum physics. By
now, PT-symmetric Hamiltonians are well established as
an effective description of dissipative systems with bal-
anced gain and loss (El-Ganainy et al., 2018).

In parallel to these developments, the advent of topo-
logical phases such as topological insulators and semimet-
als has revolutionized the classification of matter and
led to groundbreaking discoveries of topologically ro-
bust physical phenomena (Armitage et al., 2018; Chiu

et al., 2016; Hasan and Kane, 2010; Qi and Zhang,
2011). With motivation provided by experiments report-
ing novel topological states in dissipative settings (Ban-
dres et al., 2018; Cerjan et al., 2019; Chen et al., 2017;
Helbig et al., 2020; Hodaei et al., 2017; Poli et al., 2015;
Weimann et al., 2017; Zeuner et al., 2015; Zhou et al.,
2018), extending the notion of topological phases to NH
systems has become a broad frontier of current research.
In this context a plethora of uniquely non-Hermitian as-
pects of topological systems have been revealed (Gong
et al., 2018; Kawabata et al., 2019¢; Kunst et al., 2018;
Yao and Wang, 2018). Salient examples in the focus of
our review include an anomalous bulk-boundary corre-
spondence accompanied by the non-Hermitian skin effect
(Kunst et al., 2018; Lee, 2016; Martinez Alvarez et al.,
2018b; Xiong, 2018; Yao and Wang, 2018), the ubiquitous
occurrence of exceptional nodal phases (Budich et al.,
2019; Kozii and Fu, 2017; Okugawa and Yokoyama, 2019;
Rui et al., 2019a; Szameit et al., 2011; Yoshida et al.,
2019b; Zhou et al., 2018) with open Fermi-Seifert sur-
faces (Carlstrom and Bergholtz, 2018; Carlstrom et al.,
2019; Lee et al., 2018b), and a new system of generic sym-
metries (Bernard and LeClair, 2002) forming the basis
for the topological classification of both gapless (Budich
et al., 2019; Kawabata et al., 2019a) and gapped (Esaki
et al., 2011; Kawabata et al., 2019¢c; Leykam et al., 2017;
Lieu, 2018b; Shen et al., 2018; Zhou and Lee, 2019) NH
topological phases. In this review, we provide a compre-
hensive overview of these developments with an empha-
sis on their relation to exceptional degeneracies at which
both eigenvalues and eigenvectors coalesce, a paramount
spectral feature unique to NH systems.

Ezxceptional degeneracies in NH two-level systems.—As
preparation for the NH Hamiltonian formalism to be de-
tailed, we discuss a minimal two-level example that may
serve as an intuitive basis for understanding many of the
key concepts unique to NH matrices, in particular, the
aforementioned exceptional degeneracies. Specifically, we
consider the effective Hamiltonian

H:((l) g‘) a€C, (1)

whose complex energy eigenvalues

Eyr=+Va (2)

generate a generically nonunitary time evolution. An-
other key observation is that the eigenspectra of NH
systems are not analytic in the system parameters due
to the divergence of |0, FE(a)] — oo as a — 0, which
has been proposed as a mechanism for new sensing de-
vices (Chen et al., 2017; Hodaei et al., 2017). In con-
trast to the Hermitian case, the right eigenvectors de-
fined by Hyr+ = E+vyp + and left eigenvectors satis-
fying ¢+ H = 9 + Ey are generically different. Here



explicitly

YR+ = <j:1/5) , Yra = (1 £y/a). (3)

Hence, in clear contrast to Hermitian Hamiltonians,
YR+ # wz’i while ¥r/r, 4+ and ¥g,r,_ are not orthog-
onal for a # 1. At the exceptional point (EP), a = 0,
H assumes a Jordan block form, and, in addition to the
twofold degeneracy of the eigenvalue at E = 0, the eigen-
vectors coalesce such that only a single right and a single
left eigenvector remain (Heiss, 2012); see Eq. (3). On
a more technical note, at the EP the matrix H becomes
defective, meaning that the geometric multiplicity (num-
ber of linearly independent eigenvectors) is smaller than
the algebraic multiplicity (degree of degeneracy in the
characteristic polynomial) for the eigenvalue E = 0.

To better understand the consequences of this scenario,
we consider tracing a loop in the complex plane with
the parameter «, so as to enclose the EP at a = 0.
With a = |ale’®8(®) we have E = =+|a|'/2e28(*)/2
with —7 < arg(a) < 7 on the principal domain. Note
that away from the EP there is always a finite complex-
energy gap AE = 2|a|'/2e'*(®)/2 and one can thus
unambiguously track the energies and the corresponding
eigenstates. However, following an eigenstate and its cor-
responding energy while encircling the exceptional point
through arg(«) — arg(«) + 27 one readily finds that

Yr/L+ = YRr/L T EL — E-. (4)

This swapping of eigenvalues, as a manifestation of the
complex energy living on a two-sheeted Riemann sur-
face known from the behavior of the complex square-root
function around the origin, is directly associated with the
presence of second-order exceptional points; cf. Eq. (2).
A striking implication is that while encircling the EP at
«a = 0, the real part of the energy crosses zero exactly
once, namely when it passes the branch cut on the neg-
ative real line, i.e., at arg(a) = 7. In Sec. II, precisely
this property is shown to lead to the occurrence of novel
NH Fermi arcs, and higher-dimensional generalizations
thereof, as a unique and ubiquitous feature of NH band
structures.

The remainder of this review article is organized as
follows. In Sec. II, we discuss in detail the topological
band theory of non-Hermitian systems including both
nodal phases, which are found to be much more abun-
dant than in the Hermitian realm, and various notions of
gapped systems generalizing the concept of insulators.
In Sec. III, we discuss how the bulk-boundary corre-
spondence, i.e., the direct relation between bulk topo-
logical invariants and the occurrence of protected surface
states, is qualitatively modified in NH systems. This phe-
nomenon is shown to be closely related to the NH skin
effect, i.e., the accumulation of a macroscopic number of
eigenstates at the boundary of systems with open bound-
ary conditions. In both Sec. IT and Sec. I1I, we clarify the

direct relation of the uniquely NH phenomenology to the
presence or proximity of EPs. In Sec. IV, we then give an
overview of both classical and quantum systems in which
the fundamental aspects of NH topology have been pre-
dicted to occur or have even already been experimentally
demonstrated. A concluding discussion is presented in
Sec. V, providing an outlook toward a conclusive under-
standing of the role of topology in NH systems.
Throughout this review we aim for a self-contained pre-
sentation; however, a basic knowledge of Hermitian topo-
logical band structures is helpful, for which we refer the
interested reader to reviews (Armitage et al., 2018; Chiu
et al., 2016; Hasan and Kane, 2010; Qi and Zhang, 2011).

Il. NON-HERMITIAN TOPOLOGICAL BAND THEORY

In this section, we systematically review the topologi-
cal properties of Bloch bands in NH systems. The recent
pursuit of topologically classifying NH band structures
has led to the experimental discovery and theoretical ex-
planation of various topologically stable phenomena that
have no direct counterpart in the Hermitian realm, in-
cluding a novel system of gapped and gapless (symmetry-
protected) NH topological phases discussed in this sec-
tion.

A. Basic concepts and minimal examples

To get an intuitive feeling for the topological properties
of NH Bloch bands, we start by discussing some elemen-
tary examples.

1. Topological one-band models

Hatano-Nelson model.—In sharp contrast to Hermitian
systems, even a band structure consisting only of a sin-
gle band may be topologically nontrivial in the NH con-
text. A paradigmatic example along these lines is pro-
vided by the Hatano-Nelson model, which was initially
proposed to study localization transitions in supercon-
ductors (Hatano and Nelson, 1996),

H= Z (JLCILC,H_l + JRCLHCR) , Jr,Jr €R, (5)

where ¢! (c,) creates (annihilates) a state on site n, and
with |Ji| # |Jr| in general; see Fig. 1(a). The complex-
energy spectrum reads as Ep = (Jp + Jg)cos(k) +
i (Jr — Jgr)sin(k) and, as a function of k, winds around
the origin in the clockwise (counterclockwise) direction
when |Jz| — |Jr| < 0 (|Jz] — |Jr| > 0), as shown in
the inset of Fig. 1(b). These phases are formally (homo-
topically) distinguished by the integer quantized value
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FIG. 1 (a) Schematic depiction of the Hatano-Nelson model; see Eq. (5). (b) Sum of absolute squares of amplitudes per site
of all right eigenstates for the Hamiltonian in Eq. (5) with OBCs for 100 sites and |Jz|/|Jr| = 2. Inset: energy in the complex
plane, which winds around the base point Es in the complex plane with winding number w = 1 when |Jz| > |Jr| (in this case
|Je|/|Jr| = 2). (c)-(g) Absolute value of Eq. (8) for different values of y, as indicated: (c¢) p = 0. (d) p =0.5. (e) p = 1.
(f) w = 1.5. (g) u = 2. The plotting axes are shown in (c), and the color corresponds to the argument of E, with the color
bar in (g). For p increasing from zero, two vortices (E, = 0) split and merge again when p — 2. The vortices are shown
by red (gray) spheres. There is an additional zero-energy solution when p = 0, which is shown with a black sphere in (c), at
(kz,ky) = (—7/2,0), which is gapped rather than split upon increasing u. Note that if we were to decrease p from 0 to —2, it

would be this (black) zero that splits into vortices, and the other zero (red) would be gapped out.

w = —1 (1) of the spectral winding number (Gong et al.,
2018; Shen et al., 2018)
1 ™
w = dk 6k In Eg. (6)

21 J_ .

A transition between the two topologically distinct
regimes then requires Ep = 0 for some k (here at
|JL| = |JR|). We stress the conceptual difference between
the topological invariant (6), which distinguishes inequiv-
alent paths in the complex-energy plane, and standard
Hermitian topological invariants, which quantify some
winding of the eigenstates based on the Berry connec-
tion. On a more technical note, the Hatano-Nelson model
(5) represents a minimal example of a system with a so-
called point gap around the singular point £ = 0 in the
spectrum (Kawabata et al., 2019¢); see Sec. I1.C for a
more detailed discussion. For general multiband mod-
els, we note that Ej is simply replaced by detH (k) in
Eq. (6), where H(k) denotes the effective NH Hamilto-
nian in reciprocal space (Bloch Hamiltonian), such that
the winding number in Eq. (6) generically has integer (Z)
values.

Non-Hermitian skin effect.—The asymmetric hopping
strength |Jg| # |Ji| in the Hatano-Nelson model
[Eq. (5)] gives rise to another exotic feature unique to
NH systems: In the case of open boundary conditions, a
macroscopic number of eigenstates pile up at one of the
ends, a phenomenon known as the non-Hermitian skin
effect (Kunst et al., 2018; Martinez Alvarez et al., 2018a;
Xiong, 2018; Yao and Wang, 2018); cf. Fig. 1(b). The
end at which the weight of the eigenstates accumulates
depends on which direction of hopping is dominant. This
becomes particularly intuitive when one of the hopping

directions is entirely turned off, e.g., J, = 0 in Eq. (5).
In this case the Hamiltonian with open boundary condi-
tions can be written as a single Jordan block such that
the energy spectrum features an exceptional point of or-
der N, where N is the total number of sites. The prox-
imity to such high-order exceptional points, the order of
which scales with system size (Kunst and Dwivedi, 2019;
Martinez Alvarez et al., 2018b), in generic models with
open boundary conditions are at the heart of the break-
down of the conventional bulk-boundary correspondence
as discussed in Sec. III.

Complez-energy vortices—It is natural to consider
higher-dimensional extensions of the Hatano-Nelson
model. There we find that zeros in the spectrum lead
to the formation of topologically stable vortices in the
complex energy. For instance, consider the single-band
non-Hermitian nearest-neighbor single-band model cor-
responding to the spectrum

E(k) = sin(ky) + isin(ky), (7)

which has vortices (zeros) when both momenta are at 0
or 7 yielding a total of four zeros in the BZ. Focusing on
the zero at k = 0 it is clear that it is associated with a
finite winding number w = 1/(2xi) §, dk 8y In Ej,, where
the closed path C now encloses the origin but no other
zeros. This winding has the intriguing consequence that
it implies the existence of robust lines of zero real and
imaginary energy, connecting the zeros in the spectrum.

A model with a minimal number of two complex zeros
can be constructed with

E, (k) = sin(kg) + cos(ky) + pu + isin(ky), (8)

which displays the stability of the vortices upon vary-



ing p: The vortices split at a singular point when p is
increased from zero, and, after traveling in opposite di-
rections through the BZ, merge again at 4 — 2, as shown
in Figs. 1(c)-(g).

On a more conceptual note, the considered two-
dimensional systems represent a dimensional extension
to a gapless topological phase from a point-gapped lower-
dimensional model (the Hatano-Nelson model). This
phenomenology bears similarities to Weyl semimetals in
the Hermitian realm in three spatial dimensions that may
be seen as families of Chern insulators in two spatial di-
mensions, where the Weyl points correspond to topolog-
ical quantum phase transitions between different Chern
numbers (Armitage et al., 2018). To see this analogy, we
can rewrite Eq. (8) as

By (k) = [sin(k,) + p] + e, 9)

which, seen as a one-dimensional Hatano-Nelson type
model at fixed k., changes its winding number [see
Eq. (6)] precisely at the position of the complex ze-
ros (vortices). Since the instantaneous 1D model corre-
sponds to unidirectional hopping in the positive y direc-
tion and sin(k;) + p is a simple shift of all energy levels,
all eigenstates coalesce and are located at the end site in
an open chain geometry. Hence, the aforementioned NH
skin effect occurs at all k,, while the winding number
also changes as a function of k;, thus highlighting the
fact that there is no direct correspondence between these
two phenomena unless further assumptions are included,
as discussed in Sec. I11.A.2.

2. Two-banded NH models

The conceptually simplest framework for understand-
ing most of the topological properties of NH band struc-
tures, including the occurrence of exceptional degenera-
cies in momentum space as well as the role of impor-
tant symmetries, is provided by two-banded systems. We
hence proceed by considering NH model Hamiltonians,
which in reciprocal space at lattice momentum k& are of
the generic form

H(k) =d(k) - o+ do(k)oo, (10)

where d = dp +id; with dg,d; € R?, dy € C, o the vec-
tor of standard Pauli matrices, and o the 2 x 2 identity
matrix. The complex-energy spectrum then explicitly
reads as

R :doi\/d%c—d%—k%dmd[, (11)

where we drop the k dependence of all quantities for
brevity.

Abundance of exceptional degeneracies.—For Hermi-
tian systems (implying d; = 0), degeneracies in the spec-
trum (11) occur only if all three components of d are si-
multaneously tuned to zero. This is the basic reason why

(a) dp-d; =0
§~¢:‘
‘\
Exceptional .
points !
"
4
'0
(b) Fermi arc

Re[E] =0

) ] ) i-Fermi arc
dp—d; >0 Im[E] =0
FIG. 2 (a) Solutions to d% — d7 = 0 (solid line) and dg -
d; = 0 (dashed line) [cf. Eq. (12)] form closed loops in a
two-dimensional parameter space. Exceptional points appear
when both equations are satisfied simultaneously, i.e., when
the two loops intersect. (b) Exceptional points are connected
by (imaginary) Fermi arcs: When dg -d; = 0 and d% — d? <
0 (gray region), Re[E] = 0 [green (light gray) line], while
Im[E] = 0 [dark green (dark gray)] when dg - d; = 0 and
d% — d3 > 0 (outside the gray region).

topologically stable nodal phases such as Weyl semimet-
als occur in three spatial dimensions in conventional band
structures. However, allowing for d; # 0 in NH systems,
from Eq. (11) we see that degeneracies occur when
d% —d* =0, dr-d;=0 (12)
are satisfied simultaneously, i.e., upon satisfying only two
real conditions (Berry, 2004). This implies that nodal
points in an NH band structure are generic and stable in
two spatial dimensions, as shown schematically in Fig. 2.
Another key difference to Hermitian systems is that
any nontrivial solutions to Eq. (12) lead to degeneracies
in the form of exceptional points, where the NH Hamilto-
nian becomes defective since the two eigenstates coalesce
(become linearly dependent) upon approaching the de-
generate eigenvalue. This is not the case for the trivial so-
lution dp = d; = 0, known as the diabolic point. The di-
abolic point concurs with the aforementioned Hermitian
degeneracy condition, but has a much lower abundance
as it requires fine-tuning of six parameters in the NH
context. These simple algebraic observations on NH ma-
trices have profound implications on the topological clas-
sification and physical properties of NH systems, which
is elaborated on in Sec. I1.B.
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FIG. 3 Schematic plot of the energy spectrum of a Hermitian, two-dimensional Weyl node H = k.0, + kyo,. Upon adding
a mass term €o,, a gap opens in the spectrum (here shown for € = 0.1). When instead an imaginary term ¢b.o. is added to
the Hamiltonian, a ring of exceptional points, i.e., an exceptional ring appears (here shown in red for b, = 0.3). The addition
of an imaginary term ib, o, leads to the appearance of exceptional points (here shown in red for b, = 0.3). The orange plots
represent the absolute value of the energy +|F|, which for the Hermitian case simply corresponds to the energy E, whereas the
pink and blue plots show the real and imaginary parts of the energy Re[E] and Im[FE], respectively.

B. Nodal phases

A natural question that has recently been the subject
of intense theoretical and experimental study addresses
to what extent the paramount algebraic phenomenon of
EPs affects the physical properties of NH systems. In this
section, we review recent results along these lines regard-
ing both the topological classification and the physical
phenomenology of NH band structures exhibiting EPs.

1. Topological non-Hermitian metals

We illustrate the stable occurrence of NH nodal points
in two spatial dimensions by perturbing a Hermitian two-
dimensional (2D) Weyl point described by the model
Hamiltonian

H(k) = kyop + kyoy (13)

in a NH fashion in various ways. The Hermitian pertur-
bation eo, is readily seen to immediately open a gap of
the order of € > 0 [see Eq. (11) and Fig. 3], demonstrating
the fine-tuned character of a 2D Weyl point in the Her-
mitian realm. By contrast, if we add the corresponding
anti-Hermitian perturbation ib,o,, b, € R from plugging
dr = (kg, ky,0), df = (0,0,b,) into Eq. (12), we find
a ring of exceptional degeneracies at k* = b2. That is,
the system remains gapless; see Fig. 3. However, when
considering the combination of these two perturbations,
Eq. (12) amounts to k% + €2 = b2, b,e = 0, meaning that
there is a gap as soon as both € and b, are finite, thus
rendering the aforementioned nodal ring unstable. More
precisely, in Sec. I1.B.2, we discuss the fact that such
nodal structures of higher dimensions are stable only in
the presence of certain NH symmetries.

Next we choose an anti-Hermitian term 4b,0,, which
at € = 0 gives rise to degeneracies when k? = b2 and
byky = 0, i.e., at the isolated points (ks, ky) = (0,+b,)
(Fig. 3). In contrast to the ring degeneracy, these isolated
EPs are stable against € > 0, and for that matter against
any small NH perturbation. More specifically, the iso-
lated EPs will continuously move in momentum space as
a function of generic perturbations and can be removed
only if they meet in momentum space. This renders NH
2D systems with isolated nodal points in the form of EPs
a topologically stable phenomenon defining a NH Weyl
phase. On a more formal note, as mentioned in Sec. I, the
complex-energy spectrum at an isolated second-order EP
behaves like a complex square-root function around the
origin. Hence, such EPs in two dimensions form branch
points in energy that can be removed only by contracting
the branch cut connecting them.

An important physical consequence of the concomitant
phase winding of the complex energy around the EPs is
the existence of contours with purely imaginary (purely
real) energy emanating from them, also called NH Fermi
arcs (imaginary NH Fermi arcs, or ¢-Fermi arcs), which
are equivalent to the aforementioned branch cuts; wee
Fig. 2(b)(Carlstrom and Bergholtz, 2018; Kozii and Fu,
2017; Yang et al., 2019; Zhou et al., 2018). While in
our simple continuum model such contours can extend
to infinite momenta, the compact nature of reciprocal
space (the first Brillouin zone) in Bloch bands describing
crystalline structures strictly enforces them to form open
arcs connecting the EPs, which is somewhat reminiscent
of Fermi arcs in conventional 3D semimetals. However, a
crucial difference to their Hermitian counterpart is that
NH Fermi arcs are a bulk phenomenon (similar in this re-
gard to standard Fermi surfaces), while the surface Fermi
arcs in 3D Weyl semimetals connect the projection of the
Weyl points to a given surface (Armitage et al., 2018).



FIG. 4 Exceptional rings or knots where the energy is degen-
erate [in red (dark gray)] and Seifert surfaces where Re[E] = 0
[in green (light gray)] appearing in the spectra of short-range
hopping models resulting in (a) an exceptional ring, (b) a tre-
foil knot, (c) two exceptional rings, and (d) a Hopf link. See
Carlstrom et al., 2019 for Hamiltonian details.

Thus, 2D NH Weyl phases distinguished by the number
of pairs of EPs are a NH counterpart of metallic disper-
sions in solids, while generic Hermitian 3D Weyl systems
represent semimetallic band structures in this solid-state
context.

Knotted non-Hermitian metals.—Moving to three spa-
tial dimensions, the simple parameter counting in
Sec. I1.A.2 tells us that EPs in three dimensions generi-
cally, i.e., without relying on fine-tuning or symmetries,
form closed nodal lines in reciprocal space rather than oc-
curring at isolated points (Cerjan et al., 2019; Xu et al.,
2017). This allows for a new category of topologically sta-
ble NH metallic phases where the nodal lines themselves
represent topologically nontrivial objects such as links
(Carlstrom and Bergholtz, 2018; Yang and Hu, 2019) or
knots (Carlstrom et al., 2019; Stalhammar et al., 2019).
By slicing such 3D systems into layers of 2D systems in
reciprocal space, the aforementioned argument on NH
Fermi arcs may be readily generalized to the 3D case
in the following sense: Exceptional nodal lines necessar-
ily bound open NH Fermi surfaces, which for knotted
nodal structures appear in the form of Seifert surfaces;
see Fig. 4. Not only are these phenomena mathematical
possibilities of academic interest, but in fact simple mi-
croscopic tight-binding models within experimental reach
have recently been shown to exhibit a variety of linked
and knotted NH nodal structures (Carlstrom et al., 2019;
Li et al., 2019; Stalhammar et al., 2019; Yang et al.,
2020b). The phenomenon of knotted nodal NH band
structures has no direct counterpart in Hermitian sys-
tems. There, owing to the higher codimension of nodal
points, additional symmetries are necessary to stabilize
knotted or linked nodal lines (Bi et al., 2017), and such
fine-tuned nodal structures would not entail Fermi-Seifert
surfaces.

2. Symmetry-protected nodal phases

Requiring symmetries is well known to generally refine
a topological classification by constraining the set of eli-
gible physical systems. Concretely, two model Hamilto-
nians that would be considered equivalent in the absence
of a given symmetry may become distinct in its pres-
ence if any path adiabatically connecting them necessar-
ily breaks that symmetry. This phenomenon defines the
notion of symmetry-protected topological (SPT) phases
(Chen et al., 2013; Chiu et al., 2016).

Symmetries in Hermitian systems.—In conventional
Hermitian systems, a primary example of nodal SPT
phases is provided by Dirac semimetals. There the spin-
degenerate Dirac points may be continuously removed in-
dividually unless protecting symmetries such as the com-
bination of parity and time-reversal symmetry (TRS) are
postulated. This is in contrast to Weyl semimetals, the
individual Weyl points of which are topologically stable
without symmetries other than the lattice momentum
conservation defining the Bloch band structure.

A comprehensive symmetry classification was achieved
in a seminal paper by Altland and Zirnbauer (AZ) (Al-
tland and Zirnbauer, 1997). The AZ classification is
based on generic symmetry constraints characterizing en-
sembles of mesoscopic systems beyond standard unitary
symmetries that commute with the system Hamiltonian.
Specifically, the considered constraints are the antiuni-
tary TRS defined by

T H*T' = H, T.T; = +1, (14)
where the asterisk denotes complex conjugation, the
particle-hole constraint (PHC)

CLH*Cy'=-H,  C.Ci==l, (15)
and, resulting from the combination of TRS and PHC,
the chiral symmetry (CS)

UcHUL = —H,  UcU}, =ULUc=UZ =1. (16)
Considering all independent combinations of these con-
straints gives rise to the ten AZ symmetry classes, on
the basis of which the periodic table of topological insu-
lators was constructed (Kitaev et al., 2009; Ryu et al.,
2010; Schnyder et al., 2008). Later on, also consider-
ing conventional commuting unitary symmetries such as
crystalline symmetries resulted in the identification of a
plethora of additional (both gapped and nodal) topolog-
ical band structures (Ando and Fu, 2015; Chiu et al.,
2016; Fu, 2011).

1 We state the symmetry constraints in Egs. (14)-(16) for a free
Hermitian Hamiltonian in first-quantized form, on which the ac-
tion of transposition and complex conjugation are equivalent.



Generic symmetries in non-Hermitian systems.—The
natural question of how the AZ symmetry classifica-
tion may be generalized to NH systems was addressed
by Bernard and LeClair (BLC) (Bernard and LeClair,
2002), who derived a 43-fold symmetry classification
for ensembles of NH matrices. This system of sym-
metries was proposed for the topological classification
of bosonic Bogoliubov—de Gennes Hamiltonians by Lieu,
2018b. Here we review key elements of the general
BLC classification and its recently proposed amendments
(Kawabata et al., 2019c¢), focusing on qualitative differ-
ences to the AZ classification in Hermitian systems. In
essence, the main complication in NH systems relative to
the Hermitian realm is that transposition (H — HT)
and complex conjugation (H — H*) are inequivalent
operations, and even Hermitian conjugation (H — HT)
may act nontrivially on a given NH effective Hamilto-
nian H; see (Kawabata et al., 2019¢) for a detailed dis-
cussion along these lines. As a consequence, both TRS
and PHC split into two inequivalent NH generalizations,
distinguished by whether or not complex conjugation is
replaced by transposition in Egs. (14) and (15), respec-
tively. Furthermore, the nontrivial action of Hermitian
conjugation gives rise to so-called pseudo-Hermiticity
constraints (Mostafazadeh, 2002)

QLH'QT' =+H, Q+Q\=0QLQ:=1, (17

where Q4 (Q-) are ordinary commuting (chiral anticom-
muting) symmetry constraints for Hermitian H, but gives
rise to new symmetry classes in the generic NH case.
Note that symmetries involving Hermitian conjugation
leave the (quasi)momentum k invariant, and thus lead
to local constraints in reciprocal space, which change the
codimension of the EPs in the complex spectra of Bloch
Hamiltonians (as discussed later).

Since an additional minus sign upon complex conjuga-
tion may be generated simply by multiplication by the
imaginary unit (H — ¢H), TRS and PHS as defined in
Egs. (14) and (15) may be mapped onto one another by
considering ¢H instead of H (Kawabata et al., 2019b).
The identification of these operations for classification
then is, at least at a formal level, justified by the fact that
the spaces of eligible Hamiltonians differing by a prefac-
tor of 4 are isomorphic. However, since physically a mul-
tiplication by ¢ has quite dramatic effects, it is fair to say
that in real models these two cases may still correspond
to quite different scenarios; see also Sec. I1.D. Taking into
account all aforementioned symmetry constraints and re-
lations, a counting of all independent symmetry classes
leads to a grand total of 38 (Kawabata et al., 2019c),
rather than the 43 symmetry classes originally proposed
by BLC.

NH symmetries and abundance of EPs.—Given this
NH symmetry classification, we now review and illustrate
the effect of NH symmetries on the occurrence and sta-
bility of exceptional nodal structures in NH band struc-

tures (Budich et al., 2019). As discussed in Sec. I1.A.2, in
the absence of symmetries EPs have codimension 2 [see
Eq. (12)] and thus generically appear at isolated points
in 2D NH band structures and as closed lines in 3D NH
band structures.

Some basic intuition about how NH symmetries change
this behavior can be gained again by considering two-
banded models as introduced in Sec. II.A.2 preserving
the symmetry Q4. For concreteness, we make the explicit
choice @4+ = 0,. Then, the symmetry (17) in Eq. (10)
implies the constraint dg = (d%,0,0), d; = (0,d¥,d3)
which trivializes one of the conditions, namely dg-d; = 0
[see Eq. (12)], for obtaining EPs. Thus, the codimension
of exceptional degeneracies is reduced from 2 to 1. As an
immediate consequence, EPs at isolated points appear in
1D, and closed lines of EPs occur in 2D (see, e.g., Fig. 3
for the appearance of an exceptional ring). This dimen-
sional shift promotes the aforementioned bulk Fermi arcs
to open Fermi volumes, as the surfaces bounded by the
EPs now have the same spatial dimension as the system
itself.

This phenomenology is not limited to the minimal two-
band setting at hand but has been shown to generalize
to generic NH band structures in numerous BLC classes
that contain reality constraints on the complex spectrum
(Budich et al., 2019). A K-theory-based classification
of gapless nodal NH phases was recently reported on by
Kawabata et al., 2019a, and we thus arrive at periodic
tables encompassing all 38 symmetry classes, as proposed
by Kawabata et al., 2019c. Instructive examples starting
from four-band Dirac models were worked out explicitly
by Rui et al., 2019b and symmetry-protected rings of
EPs are know to naturally emerge in honeycomb-based
systems (Szameit et al., 2011; Yoshida et al., 2019b).

3. Higher-order exceptional points

We now discuss the existence of higher-order EPs,
which we encountered in our discussion of the Hatano-
Nelson model; see Sect. II.A.1. In multiband systems,
an EP of the order of n appears when the Hamiltonian
matrix features an n-dimensional Jordan block J as in
the following:

E10 0 0
0O E1 0 O
J = 0 0 FE - 0 , (18)
0 0 : -1
000 0 F

with E the eigenvalue of the EP. As the Hamiltonian
matrix may feature multiple such Jordan blocks of vary-
ing dimensions, EPs of different orders can coexist in the
band spectrum. To find an nth-order EP one needs to
tune 2n — 2 parameters (Holler et al., 2020), such that



the appearance of EPs of higher order requires an in-
creasing amount of parameter fine-tuning. Thus, largely
unexplored topological nodal phases featuring EPs of the
order of n are readily predicted to generically occur in
d = 2n — 2 dimensions.

Perturbing around an EP of the order of n with w gen-
erally leads to the Puiseux series, E ~ Ey + w'/"E; +
w?/" By + O(w3/™), which means that an nth-order EP
scales with the nth root. Demange and Graefe, 2012
showed, however, that not all higher-order EPs scale in
this fashion. For example, a third-order EP may feature
square-root behavior (Demange and Graefe, 2012). In
Sec. IIT we discuss that even though EPs with high or-
der are in principle rare in the space of all models, they
readily appear in the open-boundary-condition spectrum
of models that break conventional bulk-boundary corre-
spondence due to their close relation with the NH skin
effect. A simple example of this can be observed for
the Hatano-Nelson model with unidirectional hopping;
cf. Eq. (5), which at Jp =0 or Jgr = 0 takes the form of
Eq. (18) for open boundary conditions.

C. Gapped phases

We now turn to the topological classification of gapped
NH systems, again focusing on crucial differences to the
conventional Hermitian realm, where the periodic table of
topological insulators and superconductors based on the
AZ symmetry classification by now has become a widely
known amendment to the theory of Bloch bands.

1. Point gaps versus line gaps

The first crucial observation when moving to NH band
structures with complex-energy spectra is that there is no
canonical way of defining a spectral gap. To overcome
this issue, Kawabata et al., 2019c recently proposed to
classify complex-energy gaps into two categories: point
and line gaps. A NH model is said to have a point gap
when the complex-energy bands do not cross a base point
Ep, and where crossing this base point defines a gap clos-
ing transition; wee Fig. 5. A line gap, on the other hand,
is defined by a line in the complex-energy plane, which
has no intersections with the energy bands; see Fig. 5.
Note that models with a line gap also always have a point
gap. Line gaps in complex spectra carry close similari-
ties to energy gaps in Hermitian models (Kawabata et al.,
2019¢), as a spectrum of a Hermitian model is said to be
gapped when there are no energy bands that cross the
Fermi energy Er. Indeed, in both the Hermitian and
NH case, the individual bands in a spectrum with a line
gap can be contracted to single points. Point gaps that
do not generalize to line gaps do not have a direct Hermi-
tian counterpart and are thus genuinely non-Hermitian.

Recently it was shown that certain d-dimensional NH
models with a point gap can be naturally interpreted as
the “surface theory” of (d + 1)-dimensional, Hermitian
models (Foa Torres, 2019; Gong et al., 2018; Lee et al.,
2019b; Terrier and Kunst, 2020), where these models are
formally related via a doubling procedure and dimen-
sional ascension or reduction (Lee et al., 2019b). Fol-
lowing Lee et al., 2019b, this relation may be intuitively
understood at the level of the Hatano-Nelson model [see
Eq. (5)]: In the long-time limit, there is only one chi-
ral mode in the system. Indeed, at Re(Ey) = 0, i.e.,
k = £m/2, it is possible to find two modes with op-
posite chirality: one mode with group velocity v,/ =
Re (0kEk)|x—r /o = — (JL + Jr), and another mode with
V_rs2 = Jr + Jr. The lifetime of these modes is set by
Im(E}), which is found to be positive (negative) for the
mode with group velocity v, /2 (v_z/2). In the long-time
limit, only the mode with Im(Ey) > 0 survives, such
that we are left with a single chiral mode. In this sense,
this one-dimensional non-Hermitian model realizes the
anomalous edge behavior of the two-dimensional quan-
tum Hall effect, and can thus be interpreted as the “edge
theory” of the latter (Lee et al., 2019b).

2. Symmetry-protected point-gapped phases

The base energy Ep with respect to which a point gap
is defined may without loss of generality be chosen as
Ep = 0, which at most amounts to adding a constant
complex-energy shift to a given Hamiltonian. Then the
set of all admissible NH Bloch Hamiltonians is simply
given by the general linear group formed of all regular
complex matrices GL(n,C), where n is the number of
bands. Without additional symmetries, the set of in-
equivalent strong topological NH phases in d spatial di-
mensions for n > d/2 is then given by

Z, d odd,

19
0, d even, (19)

74 [GL(n,C)] = {
i.e., by the dth homotopy group of GL(n,C) (Budich and
Trauzettel, 2013; Schnyder et al., 2008). Non-symmetry-
protected topological NH band structures thus occur in
odd spatial dimensions (Gong et al., 2018), in stark con-
trast to Hermitian systems, where the mth Chern num-
ber in d = 2m characterizes topological band structures
that do not rely on additional symmetries (Ryu et al.,
2010). For the simplest conceivable case d = n = 1, the
explicit invariant characterizing a given model Hamilto-
nian is given by the spectral winding number defined in
Eq. (6). This can be generalized to an arbitrary n > 1
by simply replacing E; — detH(k), and to odd d > 1
as a standard higher-dimensional analog of the winding
number known from chiral symmetric systems in the Her-
mitian realm; see Eq. (21) (Ryu et al., 2010). This cor-
respondence is not a coincidence, and it was shown by
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FIG. 5 Schematic depiction of (a) gaps in Hermitian models, (b) point gaps and (c) line gaps in NH models, with the bulk

bands shown in red (gray).

Gong et al., 2018 that any NH Hamiltonian H may be
augmented by a CS-preserving Hermitian Hamiltonian

H_(HOT 1(;1) (20)

acting on a doubled Hilbert space, such that the stan-
dard Hermitian chiral invariant associated with H con-
curs with the NH spectral winding invariant

. n+1
Won41 = 7(—1)’“%! L et
" T on+ 1)\ 2r

X / te[H " (O, H) - H " (Ok,, H) -+ - 1d*" "k
BZ
(21)

in d = 2n 4 1 dimensions (Budich and Trauzettel, 2013;
Schnyder et al., 2008). Based on these observations and
the AZ symmetry classification (Altland and Zirnbauer,
1997) (see also Sec. I1.B.2), Gong et al., 2018 arrived
at a first NH counterpart of the periodic table of topo-
logical insulators. However, as discussed in more detail
in Sec. I1.B.2, the nontrivial action of Hermitian conju-
gation in NH systems naturally refines the tenfold AZ
classification to the 43-fold BLC classes, later proposed
to be reducible to a 38-fold way (Kawabata et al., 2019¢).
Adapting the K-theory methods used by Kitaev (Ki-
taev et al., 2009) for the Hermitian periodic table to this
NH scenario, topological classification tables for gapped
phases based on the BLC symmetry classification have
recently been derived (Kawabata et al., 2019¢; Zhou and
Lee, 2019).

3. Symmetry-protected line-gapped phases

Regarding gaps in the shape of a straight line in the en-
ergy spectrum, in principle any offset and orientation in
the complex plane may be considered to start with. How-
ever, as in the point-gapped case, by means of a constant
energy shift, the gap line may be transformed to cross the
origin. Furthermore, by rescaling the Hamiltonian with
a complex constant, such a gap line may then be rotated

to, say, the real energy axis. Since such a rotation of
the energy spectrum may violate, or at least transform,
generic NH symmetries, Kawabata et al., 2019c still dis-
tinguished line gaps along the real and imaginary axis
due to their distinct behavior under spectral reality con-
straints.

For the case of a real line gap, any NH model Hamil-
tonian may be continuously deformed into a Hermitian
Hamiltonian without breaking of symmetries, which re-
duces the classification problem to that of Hermitian ma-
trices. In the case of an imaginary gap a similar de-
formation to an anti-Hermitian Hamiltonian H, is al-
ways possible. However, since the NH symmetries may
be transformed in a nontrivial way when rotating to the
Hermitian Hamiltonian iH,, the classification problem
of NH Hamiltonians with imaginary line gaps amounts
to that of Hermitian systems up to a shift in symme-
try class. Based on these observations, periodic tables
for line-gapped Hamiltonians in all 38 symmetry classes
were obtained by Kawabata et al., 2019c. Furthermore,
Liu and Chen, 2019 considered the classification of de-
fects in the BLC classes and generalizations thereof.

D. Complementary classification approaches

Thus far our discussion of NH topological band struc-
tures has been based on the BLC symmetry classifica-
tion, which is a direct NH generalization of the celebrated
A7 classification of electronic systems in the Hermitian
realm. Given the broad spectrum of applications of ef-
fective NH Hamiltonians (see Sec. IV for an overview),
depending on the given physical situation, differing from
the BLC classification by considering other symmetries
and physical constraints can be natural. In the following,
we briefly highlight some prominent examples of devia-
tions from the classification discussed in Secs. I1.B and
II.C.



1. Other symmetries

The combination of time-reversal symmetry and par-
ity, widely known as PT symmetry, was originally consid-
ered a fundamental NH amendment to quantum physics
(Bender and Boettcher, 1998), as it gives rise to re-
ality constraints on the spectrum known as pseudo-
Hermiticity (Mostafazadeh, 2002), similar to the afore-
mentioned constraint Q [see Eq. (17)] from the BLC
system of symmetries. By now, PT-symmetry is widely
established in effective NH descriptions of a variety
of physical settings including photonic systems (Feng
et al., 2017, Ozdemir et al., 2019; Regensburger et al.,
2012; Yuce, 2015; Zyablovsky et al., 2014). In partic-
ular, in the context of NH topology, states protected
by PT-symmetry had been observed in optical systems
(Weimann et al., 2017) even before the systematic clas-
sification of NH symmetry-protected topological phases
(see Secs. I1.B and I1.C) was reported. As a second exam-
ple outside of the BLC classification, a loose analog of su-
persymmetry, considered in high energy as a fundamen-
tal amendment to the standard model, has been identi-
fied in certain optical settings (Heinrich et al., 2014; Miri
et al., 2013). Moreover, Liu et al., 2019a have classified
NH phases with reflection symmetry, while a topological
classification beyond the Hermitian realm was presented
for dynamically stable systems by De Nittis and Gomi,
2019.

2. Fundamental constraints in quantum many-body systems

The BLC symmetry classification applies to generic
NH matrices. However, when NH Hamiltonians are em-
ployed to effectively describe some form of dissipation
in quantum many-body systems, inherent physical con-
straints reduce the space of eligible matrices. For ex-
ample, the spectrum of effective Hamiltonians derived
from a retarded Green’s function including a NH self-
energy is constrained to lie in the lower complex half-
plane Im[E] < 0; see Bergholtz and Budich, 2019 for a
recent discussion in the context of NH topological phases.
This immediately rules out spectral winding around the
origin [cf. Eq. (6)] and vortices in the complex spectrum
as discussed in Sec. II.LA.1, thus directly affecting the
topological classification. A similar constraint appears
when considering Liouvillian operators governing the dy-
namics of open quantum systems as NH matrices (Lieu
et al., 2020; Song et al., 2019a). The basic physical mean-
ing of such constraints is that quantum dissipation can
damp out energy eigenstates (negative imaginary part)
or leave them decoherence free (zero imaginary part) but
not amplify their weight, which would correspond to a
positive imaginary part.
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3. Homotopy perspective

Finally, we note that from Hermitian systems it is well
known that there are so-called fragile topological phases
[for a recent discussion see, e.g., Kennedy, 2016] that do
not survive the addition of extra bands. Such phases
are not captured by the K-theory approach of the pre-
viously described classification schemes, but they can be
described within a homotopy-theory-based classification
(Kennedy, 2016; Kennedy and Zirnbauer, 2016). In the
NH context, new fragile topological phases have recently
been uncovered by analyzing NH band structures from
the vantage point of homotopy (Li and Mong, 2019; Wo-
jeik et al., 2020). It is worth noting that such fragile
phases relying on a low number of bands even exist in
the absence of additional symmetries.

11l. ANOMALOUS BULK-BOUNDARY
CORRESPONDENCE

In this section, we review recent findings on a phe-
nomenology unique to NH systems, namely, qualitative
changes in the so-called bulk-boundary correspondence
(BBC), a fundamental principle for topological phases
(Hasan and Kane, 2010). In conventional Hermitian sys-
tems, the BBC establishes a one-to-one relation between
topological invariants defined for infinite periodic systems
and protected gapless boundary states occurring in sys-
tems with open boundaries. By contrast, in NH topo-
logical systems the BBC in its familiar form is found
to generically break down (see Sec. III.A), and quali-
tative amendments to reestablish a modified NH BBC
have been proposed; see Sec. II1.B. For clarity, the con-
ventional BBC known from Hermitian systems is in the
following referred to as ¢cBBC. We note that even in
cases where cBBC holds, the transitions between differ-
ent topological phases may be different from Hermitian
systems, as they happen via exceptional degeneracies
rather than Hermitian band-touching points (Comaron
et al., 2020; Kunst et al., 2018). While the following
discussion focuses mostly on the conceptually simple ex-
ample of one-dimensional systems, we stress that surface
states in NH topological systems are by no means limited
to spectrally isolated bound states, but instead may also
appear in higher-dimensional systems, e.g., in the form
of chiral modes in NH Chern insulator models (Kunst
et al., 2018; Yao et al., 2018).

A. Breakdown of the conventional bulk-boundary
correspondence

In this section, we review the mechanisms that lead to
the breakdown of ¢cBBC, i.e., the failure of topological
invariants computed from the Bloch Hamiltonian to cor-
rectly predict the existence of boundary states. Further-
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FIG. 6 (a) Schematic depiction of the NH-SSH model (top
panel) [see Eq. (22)] and the Lee model (bottom panel) (Lee,
2016) and their unitary equivalence. (b) Sum of absolute
squares of amplitudes per site of all right eigenstates for the
Hamiltonian in Eq. (22) with OBCs for t; = 2.2, to = 1,
v = 1.5, and 30 unit cells. For this choice of parameters
the magnitude of hopping to the left (¢1 +~ = 3.7) is larger
than hopping to the right (1 — v = 0.7), and we observe a
piling up of states at the left end. Inset: absolute value of
the eigenvalues as a function of t; for the same parameter
choice with OBCs and PBCs in blue (dark gray) and light
gray, respectively, and with the in-gap end states in the OBC
case in red (dashed lines). The nonzero value of the winding
number is explicitly indicated by green shaded areas and the
black line corresponds to the value of ¢; for which the wave-
function localization is plotted. We note that because the
PBC and OBC Hamiltonians for the NH-SSH model and Lee’s
model are related via a unitary transform Uy, the PBC and
OBC spectra, respectively, are identical for Lee’s model.

more, we discuss the NH skin effect as well as the spectral
instability of NH matrices, which accompanies the break-
down of ¢cBBC. There is, however, no strict one-to-one
relation with these phenomena since the skin effect can
also occur in systems where the cBBC does not have a
clear meaning, as in systems with only point gaps.

1. Canonical models and their interrelation

The breakdown of ¢cBBC in NH models was first ob-
served by Lee, 2016, where a Creutz ladder with com-
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plex hopping terms and onsite dissipation [see the bottom
panel of Fig. 6(a)] was studied. This phenomenon may be
attributed to the anomalous behavior of the bulk states
that, in the case of open boundary conditions (OBC), pile
up at the boundaries (Kunst et al., 2018; Xiong, 2018);
see also Sec. II1.A.2 for a more detailed discussion. The
easiest and most intuitive way of breaking cBBC is by
including hopping terms in the tight-binding Hamilto-
nian, whose tunneling strengths are direction dependent
(anisotropic); see the upper panel of Fig. 6(a). As a
consequence, the bulk states can propagate around the
system in the preferred direction for periodic boundary
conditions (PBCs), while they are found to pile up at
the boundaries in the case of OBCs; see Fig. 6(b). This
extreme difference in the behavior of the bulk states un-
der different boundary conditions intuitively invalidates
the authority of bulk topological invariants computed for
PBCs in determining the existence of boundary states.
To explicate and exemplify this exotic behavior, we start
by studying a one-dimensional, conceptually simple ex-
ample, which displays features similar to those reported
by Lee, 2016. We consider a NH version (Lieu, 2018a) of
the Su-Schrieffer-Heeger (SSH) chain (Su et al., 1980) as
described by the Hamiltonian

N
Hssit = Y [(t1+7) chemn + (=) el can (22)

n=1

+to (CL,nHCBm + c}rg’ncAmH)} , t1,t2,7 €R,

where cf, ,, (Ca,n) creates (annihilates) a state on sublat-
tice site @ € {A, B} in unit cell n, N is the total num-
ber of unit cells, ¢; and v are the nearest-neighbor (NN)
hopping parameters inside the unit cell, and ¢5 is the NN
hopping parameter between unit cells; see the top panel
of Fig. 6(a) (Kunst et al., 2018; Yao and Wang, 2018;
Yin et al., 2018). Hermiticity is broken when v # 0,
which results in a different modulus of the hopping am-
plitude between hopping to the left with respect to hop-
ping to the right inside the unit cell. The Bloch Hamil-
tonian is of the general form given in Eq. (10), here with
d(k) = (t1 + ta cosk, tysink +iv, 0), do(k) = 0, where
the presence of an imaginary anti-Hermitian term ivyo,
formally signals the breaking of Hermiticity. In the in-
set in Fig. 6(b), we plot the absolute value of the band
spectrum for OBCs (in blue) and PBCs (in gray), ob-
serving a clear discrepancy. In this sense, the direction-
dependent hopping is accompanied by a spectral insta-
bility; see Sec. II1.A.3 for a more general discussion.

As with the Hermitian SSH chain, this model has a chi-
ral symmetry, i.e., {H, 0.} = 0, and it is thus possible
to define a winding number, where in the Hermitian case
this winding number determines the number of states lo-
calized to the ends (Ryu and Hatsugai, 2002; Schnyder
et al., 2008). The nonzero values of the NH counterpart of
the winding number (Gong et al., 2018; Kawabata et al.,



2019c¢), i.e., the spectral winding number [cf. Eq. (6) with
Ey, replaced by detH (k)], are indicated explicitly in the
spectrum in the inset in Fig. 6(b) by the green shaded
areas. Here, unlike the conventional case, the winding
number fails to predict the existence of the end states in
the OBC case, which are shown in red in the OBC spec-
trum. In fact, the winding number changes value when
a gap closing appears in the PBC spectrum, which is at
strikingly different parameter values than when the OBC
system features phase transitions. To further elucidate
what is going on we plot the sum of the amplitude per site
for all wave functions in the case of OBCs in Fig. 6(b),
confirming that the wave functions indeed pile up at the
boundary. In summary, the simple model defined by Eq.
(22) indeed breaks ¢cBBC and exhibits NH-skin-effect be-
havior, which was recently confirmed in several experi-
ments (Ghatak et al., 2020; Helbig et al., 2020; Hofmann
et al., 2020; Weidemann et al., 2020; Xiao et al., 2020).

We note that models in which the modulus of the hop-
ping amplitudes is explicitly direction dependent, such
as in Eq. (22), are sometimes referred to as “nonrecip-
rocal hopping models” in the literature (Hofmann et al.,
2020), and the accumulation of bulk states at a bound-
ary is often attributed to this property (Lee et al., 2019a).
While this is analogous to nonreciprocal optical models,
where the symmetry of wave transmission is broken [see
Sounas and All, 2017 for a review], the straightforward
translation of this definition to the language of tight-
binding models with internal degrees of freedom may not
be unambiguous. When interpreting the sublattice de-
gree of freedom of the NH-SSH model in Eq. (22) as a
spin rather than a spatial degree of freedom, the model
would no longer be nonreciprocal in the aforementioned
sense: While the internal coupling strengths between the
two spins have a different magnitude, the hopping mag-
nitude between lattice sites is no longer direction depen-
dent. Nevertheless, in this differing interpretation, the
model still exhibits all the aforementioned properties. We
now demonstrate that the ambiguity of this notion of
reciprocity goes much further.

In particular, a simple unitary transformation relates
the Bloch Hamiltonians of the NH-SSH model and the
Lee model

1 /14
Hss(k)— U'Hssy (k)U= Hyeo(k), U:\/E(i i) (23)
Here we can directly identify  dpee(k) =

(tl + t5 cosk, 0, to sink +i’}/), dO,Lee(k) = 0 for HLee(kJ)
(Lee, 2016). In this model it is natural to interpret
v as on-site gain (+i7y) and loss (—iy), while ¢; and
to remain standard Hermitian NN hopping parameters
inside and between unit cells, respectively; see the lower
panel in Fig. 6(a). Moreover, also with OBCs it is
easy to show that one may write Uy = 1y ® U, where
1y is the identity matrix of dimension N, such that
U]T\,Hgs%CUN = HPBC with Uy again being unitary.
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Thus, the spectra of Lee’s model (Lee, 2016) with either
PBCs or OBCs are identical to those of the NH-SSH
model, as shown in the inset of Fig. 6(b). It follows
that the Lee model also exhibits a similar accumula-
tion of bulk states at the boundary, since the unitary
transformation Uy acts only locally and hence does not
drastically alter the localization of the eigenstates.

In summary, while Lee’s model [see the bottom panel
of Fig. 6(a)] contains only diagonal on-site gain and loss
terms, it is related to a model with explicitly anisotropic
hoppings through a local unitary transformation. This
observation further blurs the difference between “recip-
rocal” and “nonreciprocal” tight-binding models, as in-
ferred from the symmetries of their hoppings, and we
thus refrain from such a distinction in this review. In-
stead, we emphasize that the breakdown of the cBBC is
a generic NH phenomenon not tied to a specific micro-
scopic provenance of the non-Hermiticity.

2. Non-Hermitian skin effect

The concept of a BBC relies on the doctrine that intro-
ducing boundaries into a model does not have significant
effects on the bulk states, meaning that the model does
not undergo a topological phase transition when going
from PBCs to OBCs. In stark contrast, the behavior
of the bulk states associated with the family of ¢cBBC-
breaking NH models studied in this section is altered in
an extreme way upon considering OBCs: These models
feature the NH skin effect [see Fig. 6(b)], a term coined
by Yao and Wang, 2018.

Intuitively, the appearance of the localized bulk states,
which are also called skin states, can be understood from
the presence of or proximity to one or more high-order
EPs (cf. Sec. I1.B.3), through which the states need to
pass when tuning from PBCs to OBCs (Xiong, 2018).
The appearance of these EPs, which scale with sys-
tem size (infinite order EPs occur in the thermodynamic
limit), similar to what we saw for the Hatano-Nelson
model in Sec. I1.A.1, results in a topological distinction
between the model with PBCs and OBCs thus leading
to a natural breaking of ¢cBBC (Xiong, 2018). The con-
nection between higher-order EPs, say, nth-order EPs at
which n eigenstates coalesce (cf. Sec. I1.B), and the piling
up of bulk states can then be understood as follows: Close
to such an EP, a macroscopic number n of eigenstates
necessarily have large spatial overlap, which is achieved
through their accumulation at the same boundary.

This NH skin effect always appears when ¢cBBC is bro-
ken and can thus be seen as a telltale signature thereof.
The anomalous localization behavior of the bulk states
does not find a counterpart in Hermitian physics and is
thus an inherently NH phenomenon.

It is natural to ask which minimal ingredients are
needed for a NH hopping model to possess skin states,



and thereby to break ¢cBBC. While not a sufficient cri-
terion, a necessary requirement is that the Hermitian
(Hy = HI,) and anti-Hermitian [iH4 = —(iHA)'] parts
of the NH Hamiltonian H = Hy +¢H 4 do not commute,
i.e., [Hy, Ha] # 0.7 If they do commute, then Hy and
H 4 share a common eigenbasis, which means that the
eigenstates of H are the eigenstates of a Hermitian ma-
trix, namely, of Hy (and H,4), and as a consequence, the
corresponding eigenstates form a standard orthonormal
basis and can as such not be skin states.

Longhi, 2019c¢ showed that the existence of the NH skin
effect in one-dimensional NH models can be detected by
making use of a bulk probe: If the maximum value of the
Lyapunov exponent in the long-time limit is at a drift
velocity other than zero, this is a sufficient condition for
the NH model to display the NH skin effect as well as
symmetry-breaking phase transitions in the OBC spec-
trum.

A recent suggestion is that the presence of a topolog-
ically nontrivial point gap in the complex-energy spec-
trum of the Bloch Hamiltonian is equivalent to the eigen-
states in the OBC system being skin states (Okuma et al.,
2020; Zhang et al., 2020), which was also observed by
Wanjura et al., 2020.

One may ask whether the piling up of states is forbid-
den by certain symmetries. Indeed, Kunst and Dwivedi,
2019 showed that PT-symmetric models (cf. Sec. I1.D)
in the PT-unbroken phase (Bender and Boettcher, 1998)
cannot possess skin states, which was corroborated by
Kawabata et al., 2019¢, who also showed that models
in the presence of a parity inversion symmetry TRST,
which is defined as the relation in Eq. (14) with H* —
HT, or pseudo-Hermiticity in the unbroken phase (cf.
Sec. I1.B.2) are also excluded from exhibiting a break-
down of cBBC. It can be intuitively understood why these
symmetries prevent the existence of skin states: For ex-
ample, PT symmetry maps one boundary to the opposite
boundary, such that any state localized at only one of the
boundaries automatically breaks PT (Hu and Hughes,
2011).

It is worthwhile to point out that skin states do not
necessarily have to accumulate on one boundary alone
(Hofmann et al., 2020; Song et al., 2019b). For exam-
ple, taking two time-reversed copies of a ¢cBBC-breaking
model immediately results in the appearance of skin
states on both boundaries, which was referred to as the
Z5 skin effect by Okuma et al., 2020. Additionally, skin
states may also appear on boundaries with a codimension
higher than 1, such as at corners and hinges (Edvardsson
et al., 2019; Ezawa, 2019d; Liu et al., 2019b; Luo and
Zhang, 2019).

2 An equivalent way of stating the necessary condition for skin
states is that H cannot be normal.
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3. Spectral instability

As with the eigenstates, the eigenvalues of ¢cBBC-
breaking NH Hamiltonians are extremely sensitive to
perturbations that connect boundaries; see the inset in
Fig. 6(b). This sensitivity to boundary conditions can
even result in drastically different qualitative features of
the two spectra: Indeed, the OBC spectrum may, for
instance, be gapped and topologically nontrivial, while
the PBC spectrum of the same model is gapless (Kunst
et al., 2018). This spectral instability can be system-
atically understood as a discontinuous behavior in the
eigenvalue spectra of NH matrices under small random
perturbations. More specifically, while adding a small
perturbation with largest absolute eigenvalue € to a Her-
mitian system at most leads to a change of the order of
€ in the spectrum, in NH matrices changes of the order
of €'/N may occur (Krause, 1994), where N is the num-
ber of sites. In the thermodynamic limit (N — oo), this
amounts to a change of the order of 1 for an arbitrarily
small € > 0 representing the analytical reason for the ob-
served fragility of eigenvalue spectra in NH systems. The
tuning between boundary conditions may be interpreted
as such a perturbation; see Herviou et al., 2019a for a
detailed discussion.

This spectral instability is related to the previously
discussed NH skin effect: A study of the spectral insta-
bility in a cBBC-breaking model revealed that when tun-
ing between OBCs and PBCs, one or more higher-order
EPs are encountered (Xiong, 2018). Indeed, when the
boundaries of a NH model with OBC are connected via
an exponentially small perturbation proportional to the
system size N, i.e., ~ e~ N for some model-dependent
constant a (Koch and Budich, 2020; Kunst et al., 2018),
the spectrum shows crossover behavior, which can be un-
derstood from the behavior of the skin states: For a large
enough coupling, which is found to be exponentially small
in N, the skin states can tunnel through and behave like
ordinary bulk states in the sense that they are evenly dis-
tributed throughout the lattice, in which case the spec-
trum qualitatively resembles that of the PBC case (Kunst
et al., 2018). Additionally, the presence of perturbations
connecting the boundaries was shown to result in uncon-
ventional behavior for the fidelity and Loschmidt echo
near the higher-order EPs (Longhi, 2019a).

Because of the extreme sensitivity of cBBC-breaking
NH models to boundary conditions, it seems natural
to wonder about the physical relevance of studying the
eigenvalue spectra of such NH models with OBCs (Gong
et al., 2018; Herviou et al., 2019a). However, when re-
quiring physically motivated locality conditions on the
considered perturbations, the physical properties specific
to the eigenspectra of NH systems with OBCs have been
shown to be robust (Koch and Budich, 2020). This ren-
ders the anomalous BBC observed in the eigenvalue spec-
tra of NH systems a topologically stable and generically



observable phenomenon.

4. Domain-wall geometries

Thus far we have focused on the physics of ¢cBBC-
breaking NH models in the case of PBCs and OBCs
and noticed that both the quantitative and qualitative
behavior of these NH models can be extremely differ-
ent in these two cases. Another interesting geometry
to consider is that of domain walls, which can lead to
drastic alterations of the physics of NH models (Deng
and Yi, 2019; Malzard et al., 2015; Malzard and Schome-
rus, 2018; Schomerus, 2013). For example, Xiong, 2018
pointed out that if a cBBC NH model is coupled to an-
other model that resides in a different topological phase,
high-order EPs disappear rapidly from the spectrum. It
has been conjectured (Leykam et al., 2017; Xiong, 2018)
that cBBC is generically restored in such domain-wall ge-
ometries. However, Kunst et al., 2018 explicitly exempli-
fied that upon coupling the NH-SSH model [cf. Eq. (22)]
to its Hermitian, topologically trivial counterpart, cBBC
may remain broken in the sense that the skin effect pre-
vails. Indeed, the proximity to EPs persists and bulk
states still locally accumulate, albeit now at the domain
wall, as long as the energy gap in the Hermitian system
is large enough (Kunst et al., 2018); see Fig. 7. For a suf-
ficiently small gap (or short Hermitian domain), the skin
states can tunnel through, and behavior similar to the
NH model with PBC is retrieved (Herviou et al., 2019a;
Kunst et al., 2018). Changing the size of the band gap
in the attached Hamiltonian in such a setup may thus be
seen as an alternative way of tuning between OBCs and
PBCs, while at the same time introducing new effects
that cannot be observed in simple OBC geometries.

Domain-wall effects have also been studied for mod-
els that preserve ¢cBBC. For example, by coupling two
PT-symmetric SSH chains that are in distinct topolog-
ical phases, a defect state appears at the domain wall
with positive imaginary energy, thus representing a solu-
tion with a growing amplitude, while the bulk states all
have zero imaginary energy (Schomerus, 2013). A sim-
ilar setup considered by Yuce, 2018 confirmed that PT
symmetry is indeed spontaneously broken on the inter-
face. As a consequence, the defect state dominates in the
long-time limit. These predictions were experimentally
confirmed in a resonator chain (Poli et al., 2015), paving
the way to the experimental realization of topological
lasers (Parto et al., 2018; St-Jean et al., 2017; Zhao et al.,
2018). Additionally, it was shown that models that are
topologically trivial in the Hermitian limit can host topo-
logically protected defect states in the NH case (Malzard
et al., 2015; Malzard and Schomerus, 2018). Considering
domain walls in the form of defects can thus lead to new
genuinely NH physical phenomena.
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B. Approaches to reestablishing the bulk-boundary
correspondence in NH systems

While the concept of a BBC in NH models with a point
gap in their complex spectra has largely remained elusive,
significant progress has been made on reestablishing a NH
BBC in models with line gaps (Kunst et al., 2018; Xiong,
2018; Yao et al., 2018; Yao and Wang, 2018), which is the
focus of our subsequent discussion. We review two main
approaches in detail: (i) a construction combining infor-
mation about both open and translation-invariant sys-
tems that leads to modified topological invariants akin to
those in the Hermitian realm (Yao et al., 2018; Yao and
Wang, 2018), and (ii) the biorthogonal BBC approach,
which makes direct use of the properties of the OBC
spectrum and relates phase transitions to delocalization
transitions of biorthogonal boundary states (Kunst et al.,
2018). While they are seemingly distinct we elucidate the
equivalence of these two approaches, which from a differ-
ent angle provide accurate predictions for generic NH sys-
tems. We also give an overview of complementary works
relating to NH BBC (Borgnia et al., 2020; Brzezicki and
Hyart, 2019; Edvardsson et al., 2019; Esaki et al., 2011;
Herviou et al., 2019a; Imura and Takane, 2019; Kunst
and Dwivedi, 2019; Lee and Thomale, 2019; Lieu, 2018a;
Song et al., 2019b; Yang et al., 2020c; Yao et al., 2018;
Yokomizo and Murakami, 2019; Zirnstein et al., 2019).

1. Non-Bloch bulk-boundary correspondence

A strategy for finding a generalized BBC was presented
by Yao et al., 2018 and Yao and Wang, 2018 and further
expanded upon by Yokomizo and Murakami, 2019, Yang
et al., 2020c, Deng and Yi, 2019 and Kawabata et al.,
2020. There a generalized BZ is constructed to include
information, which in the case of cBBC is not contained
in the standard Bloch bands, pertinent for the accurate
definition of bulk topological invariants. The key idea
in this approach is that a state with degree of freedom
j in unit cell n of a model with OBC v, ; can be writ-
ten as vy, ; = [7;, where §; = r;e?* and 1, is the
eigenvector of the Bloch Hamiltonian. Solutions for 3;
in terms of the hopping parameters and energy eigenval-
ues are then found by solving the eigenequations using
this ansatz (Yao and Wang, 2018). From these solutions,
it is possible to derive the generalized BZ Cjg, and to find
expressions for the boundary states, as we review in the
following.

The generalized BZ is found by looking at the condi-
tion for obtaining the continuum bands (Yokomizo and
Murakami, 2019). Ordering the solutions ; according
t0 |Bi] < 8] < -+ < |Bas 1| < |Bas], where § = al
with « degrees of freedom and L is the range of hop-
ping, Yokomizo and Murakami, 2019 proposed that the
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FIG. 7 (a) Domain-wall geometry between a NH-SSH domain [cf. Eq. (22)] [top half circle with lattice sites in red and blue
(gray and black)] and a Hermitian region [bottom half circle with sites in green and purple (light and dark gray)]. The NN
hopping parameters for the NH-SSH chain are t1, t2, and v while in the Hermitian part they are ¢; and t5. The two chains are
coupled to each other via the hopping parameter t5. (b)—(d) Absolute value of the eigenvalues as a function of ¢; for to = 1,
v =15, t5 = 0.5, and N = 18 unit cells in both chains, and (b) #; = 3, (c) t; = 1, and (d) #; = 1/2. The spectrum in the
Hermitian SSH chain is (b) gapped, (c) gapped with a smaller gap and (d) gapless. The black, dashed grid lines correspond to
the gap closings in the PBC spectrum of the NH-SSH chain showing that even though the NH model is coupled to a Hermitian
chain via a domain wall, the anomalous physics persists when the gap in the Hermitian chain is large enough.

continuum states are retrieved by demanding that

|Bs| = |Bs+1] = 1. (24)

This condition is derived by assuming that the system
size N is large and the energy states are densely dis-
tributed. The complex-valued trajectories of Ss and
Bs+1 then form the generalized BZ Cg, which in the case
of Hermitian or cBBC-preserving NH Hamiltonians sim-
ply reduces to the unit circle, i.e., to the conventional
one-dimensional BZ.

When |8| # 1, where we have dropped the label to
simplify notation, the continuum states exhibit the NH
skin effect: They localize to the left boundary for |§] < 1
and to the right boundary for |[3| > 1. As mentioned,
it is also possible to find models with skin states that
are localized to opposite boundaries (cf. Sec. II1.A.2), in
which case part of the generalized BZ Cp lies inside the
unit circle, and part of it outside (Song et al., 2019b).

If the energy Fi,p, of possible topological boundary
modes is known, it is possible to find a solution for these
states by plugging Fi, into the solutions §; (Yao and
Wang, 2018). The bulk-band gap then has to close when
|B(Etop)| = 7, i.c., when the topological boundary state
merges with the bulk bands.

As the energy of the boundary states is not usually
known, however, an alternative way to find the band-
gap closing is to make use of what Yao and Wang, 2018
called non-Bloch topological invariants: Replacing e'*
with g or, equivalently, applying a shift in the wave vec-
tor k — k —ilnr in the Bloch Hamiltonian H (k) leads
to the so-called non-Bloch Hamiltonian H () defined on
the generalized BZ and allows for the computation of
non-Bloch topological invariants, which correctly predict
the existence of topological boundary states. Indeed, it
was exemplified that a winding number derived for H(f)
on the generalized BZ correctly predicts the existence of
the zero-energy end states for the model in Eq. (22) by

Yao and Wang, 2018, and a variation of the model was
givenby Yokomizo and Murakami, 2019. Furthermore,
Yang et al., 2020c elaborated on the geometrical inter-
pretation of the generalized BZ, Lee et al., 2020a derived
physical responses based on this picture, and Yao et al.,
2018 introduced a non-Bloch Chern number that accu-
rately predicts the existence of chiral edge states.

We note that the ansatz v, = 5™ for the wave func-
tion, which is the basis of the generalized BZ construc-
tion, can be seen as a generalization of the usual ansatz
thp = €*™) in Hermitian systems, obtained by shifting
the wave vector k according to k — k — ¢lnr. Indeed,
for Hermitian and cBBC-preserving systems, » = 1, such
that 8 = e'* and Bloch’s theorem is retrieved. In this
case, the condition in Eq. (24) is trivially satisfied for
all B;, showing that this approach connects to the well-
established Hermitian limit in the expected way.

2. Biorthogonal bulk-boundary correspondence

Biorthogonal quantum mechanics.—An alternative ap-
proach for finding a generalized BBC was presented by
Kunst et al., 2018 in the form of a biorthogonal BBC, and
further generalized by Edvardsson et al., 2019, 2020. To
discuss the biorthogonal BBC in a self-contained man-
ner, we recall basic elements of biorthogonal quantum
mechanics (QM); see Brody, 2014 for a pedagogical re-
view. Biorthogonal QM can be seen as a generalization
of ordinary QM by allowing for the treatment of NH ob-
servables, and it reduces to ordinary QM upon restoring
Hermiticity. As mentioned in Sec. I, a NH Hamiltonian in
general has inequivalent right and left eigenvectors | )
and (11|, respectively, such that its eigenvalue equations
read

H|Yr:) = Ei|[YR,i) , (YrilH = E; (Y,

where the latter expression is alternatively written as



Ht|[¢r ;) = Ef [¢r ;). As shown in our minimal example
in Sec. I, the left and right eigenvectors generally do not
form an orthonormal set with the standard inner prod-
uct; see Eq. (3). However, the essence of biorthogonal
QM is that, away from exceptional degeneracies, the sets
{|vr)} and {|¢r)} form a useful biorthogonal basis by
demanding that

(Yr,ilYR,j) = 6ij- (25)

As we see later this change in normalization condition
has profound implications since the left and right eigen-
states can be strikingly different and may even localize
at opposite boundaries of the system. An immediate and
important consequence is that the energy eigenvalues of a
NH Hamiltonian are given by its expectation value with
respect to the right and left wave functions, i.e.,

(YrilH|YR,:) = E; € C. (26)

Expectation values of the form of Eq. (26) are known as
biorthogonal expectation values, and play a central role
in understanding the dynamics of NH models.

Biorthogonal BBC.—In the following, we discuss how
the biorthogonal formalism can be used to construct a
variant of the BBC that remains intact for NH systems
with a line gap and reduces to ¢cBBC in the Hermitian
limit. This approach, coined biorthogonal BBC, was in-
troduced by Kunst et al., 2018, who showed that one
way to qualitatively and quantitatively understand the
physics of NH models with OBC is by making use of
biorthogonal QM.

To illustrate this method, we make explicit use of the
example in Eq. (22). Kunst et al., 2018 showed for the
Hamiltonian in Eq. (22) with OBCs that it is possible
to write the following ansatz for the zero-energy state,
which is exponentially localized and has nonzero weight
on the A sublattices only:

N
/L) = Nejw Y el . 10), (27)

n=1

where Ng (N1) is the normalization factor of the right
(left) wave function, n labels the unit cell with a total of
N unit cells, and cz’n creates a state in the vacuum |0)
on sublattice A in unit cell n. The localization factors
rr and ry, are different

rr=—(t1 —y)/ta # ro=—(t1 +7)/t2, (28)

and hence, depending on the parameter values, the left
and right states can be localized on either the same or at
opposite boundaries. It is worth noting that the possibil-
ity of having the left and right states localized at opposite
boundaries implies that the biorthogonal normalization
condition [Eq. (25)] becomes radically different from the
standard normalization condition familiar from the Her-
mitian realm.
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To study the localization of the zero-energy states in
the lattice, the biorthogonal expectation value of the pro-
jection operator II,, = |ea ) (ean| + leBn) (€p,n| With
lean) = ¢l [0) projected onto each unit cell n is com-
puted and leads to (¢, o|IL,|[YR.0) = NfNR (rirg)" for
the wave functions in Eq. (27). According to this ex-
pression, the zero-energy state is thus a bulk state when
|rirr| = 1, i.e., when it is equally localized to all unit
cells, while it is exponentially localized to n = 1 when
|rirr| < 1 and disappears into the bulk for |rirg| > 1.
This indeed corresponds to what we see in the band spec-
trum in the inset of Fig. 6(b) up to finite-size corrections:
The bulk gap closes when |(t? — 42)/t3| = 1, while the
in-gap zero-energy states exist for |(t2 — +2)/t3| < 1.
Note that identical results are found when considering
the biorthogonal expectation value of the projection op-
erator with respect to the zero-energy state localized on
the B sublattices at the end n = N. Thus, |rjrg| de-
termines whether boundary states exist, defining the no-
tion of a biorthogonal BBC. By contrast, the ordinary
expectation values (based on the left and right eigen-
states, respectively) yield (Yr o|IL,|YR0) ~ Ire|*" and
(r.o|Mnltbr.o) ~ |ro]*™, respectively, for the wave func-
tion in Eq. (27). Both of these expectation values coin-
cidentally predict gap closings in the PBC spectrum and
thus fail to correctly predict the formation of zero-energy
edge modes when ¢cBBC is broken.

Biorthogonal polarization.—Generalizing the insights
gained from the aforementioned quantity |r}rg|, Kunst
et al., 2018 introduced the biorthogonal polarization

lim >on (Wrolndl, [YR0)

N—o00 N

P=1- . (29)
From this expression, it is straightforward to see that P
equals 1 in the presence of end states, i.e., when |r}rg| <
1 in the previous discussion, and 0 when no such states
exist, i.e., when |rjrg| > 1. P jumps when the gap
closes corresponding to |ryrr| = 1. As such, the value
of the biorthogonal polarization accurately predicts the
presence of boundary states inside the bulk gap, and can
thus be interpreted as a real-space invariant.

We note that the condition |r}rgr| =1 is equivalent to
the merging condition [|3(Eiop)| = 7] found within the
non-Bloch framework (Yao and Wang, 2018): Indeed,
the anistropic SSH model in Eq. (22) was also studied by
Yao and Wang, 2018 leading to equivalent results for the
topological boundary states as well as their attachment
to the bulk bands.

We note that the biorthogonal polarization P is equal
for models that are related to each other via unitary
transformations acting locally, e.g., Pssy for the nonre-
ciprocal SSH model equals P, for Lee’s model discussed
in Sec. III.A.1 (Edvardsson et al., 2020).

Generalizations.—As pointed out by Kunst et al.,
2018, the wave-function solution in Eq. (27) can straight-
forwardly be generalized to a large family of lattice mod-



els with any dimension such as NH Chern insulators in
two dimensions. Further generalizations to higher-order
boundary states of NH models work analogously (Ed-
vardsson et al., 2019): In each case |} rg| determines the
existence of boundary states and accurately predicts the
occurrence of phase transitions. It has also been verified
that the definition of the biorthogonal polarization can
be naturally extended to models with multiple boundary
states on one boundary (Edvardsson et al., 2020).

We emphasize that the biorthogonal polarization de-
fined in Eq. (29) is not limited to solutions of the form
given in Eq. (27) but can be computed for any boundary
state in generic NH models that do not afford an exact
analytical solution (Kunst et al., 2018). This makes the
biorthogonal BBC a general principle for NH topological
models, which recovers the cBBC where applicable.

Last, we note that while right wave functions are most
naturally accessible in experiment, Schomerus, 2020 pro-
posed in a recent theoretical work that it is also possible
to probe left wave functions as well as the biorthogonal
contribution of both right and left wave functions beyond
the spectral properties when measuring the response
functions to external perturbations in robotic metamate-
rials such as the ones studied by Brandenbourger et al.,
2019 and Ghatak et al., 2020; see Sect. [V.A.2 for a more
detailed discussion. Exploiting these possibilities it was
suggested that NH topological sensors with a robust sen-
sitivity scaling exponentially with the size of the system
may be realized (Budich and Bergholtz, 2020).

3. Complementary approaches

We now give an overview of complementary perspec-
tives and approaches to BBC in NH systems reported in
the recent literature.

Refinements.—The NH BBC developed by Kunst
et al., 2018 and Yao and Wang, 2018 has been refined
and corroborated by a number of recent studies. As dis-
cussed in Sec. I11.B.2 for the biorthogonal approach, it is
beneficial to have access to exact solutions to understand
the properties of NH models. As a complementary ap-
proach to obtaining such exact solutions, transfer-matrix
methods were introduced in the context of NH models
by Kunst and Dwivedi, 2019. There one of the central
results is that the determinant of the transfer matrix 7'
associated with a given NH hopping model plays a crucial
role in determining whether ¢cBBC is broken: Namely,
when the transfer matrix is unimodular, i.e., |detT| = 1,
the PBC and OBC spectra are equivalent, and bulk states
in the OBC case behave in the ordinary fashion. When
|detT| # 1, on the other hand, more interesting prop-
erties arise: The bulk spectra for PBCs and OBCs are
different, while the norm of the bulk states in the OBC
case is proportional to |detT’|"/2, with n labeling the su-
percell, thus signaling the NH skin effect. It is possible
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to tune between the bulk spectra by applying a shift to
the crystal momentum, i.e., Epgc(k) — Eopc(k) when
k — k — (i/2)log(detT), where this shift in the Bloch
momentum is equivalent to the one found by Yao and
Wang, 2018 thus corroborating the generalized BZ ap-
proach. The transfer-matrix method also corroborates
the findings from the biorthogonal approach: The eigen-
values of the transfer matrix for the boundary states,
which correspond to the decay coefficients of their bound-
ary states, naturally lead to the definition of a merging
condition equivalent to the one found by Kunst et al.,
2018 (Jryrgr| = 1). Additionally, transfer matrices can
be used to determine the appearance of EPs in the OBC
spectrum. Indeed, when |detT| — 0, c0 it is possible to
hop in only one direction and EPs with an order scaling
with system size naturally show up in the OBC spectrum;
see also the discussion in Sec. IT1.A.2.

The biorthogonal and non-Bloch frameworks were fur-
ther expanded by Lee and Thomale, 2019, where a com-
plex flux effectively interpolating between PBCs and
OBCs was used (Hatano and Nelson, 1996), which is
equivalent to tuning the value of the complex part (—Inr)
of the complex momentum (k — ¢Inr) as introduced by
Yao and Wang, 2018. The insertion of the complex flux
allows for the derivation of a condition for the existence
of bulk and, more particularly, skin states akin to the one
in Eq. (24).

The BBC of NH models was also studied by making
use of Green’s functions or, more specifically, boundary
Green’s functions by Borgnia et al., 2020 and Zirnstein
et al., 2019 to find topological phase diagrams. In partic-
ular, Zirnstein et al., 2019 used this machinery to study
NH Dirac fermions in one dimension, and a nonzero wind-
ing number [cf. Eq. (6), with Ej replaced by detH (k)]
is found to lead to a spatial growth of the bulk Green’s
function signaling a breakdown of cBBC and the occur-
rence of the NH skin effect. This relation between a non-
trivial winding number and the appearance of skin states
has indeed been elaborated upon at the level of dynamic
matrices (Wanjura et al., 2020) as well as at the Hamil-
tonian level in recent works (Okuma et al., 2020; Zhang
et al., 2020); cf. Sect. ITI.A.2. Borgnia et al., 2020 found
edge modes by computing the in-gap zeros of the doubled
boundary Green’s function, where the input Hamiltonian
is of the form of Eq. (20). There, by studying the Green’s
function in this framework, a classification of NH models
in terms of their gaps is found, thus extending the results
given by Zirnstein et al., 2019.

As a complementary approach, Imura and Takane,
2019 proposed modified periodic boundary conditions
(mPBCs) to restore BBC in NH systems. The key idea
is that the mPBCs incorporate the NH skin states di-
rectly into a modified periodic model from which it is
then possible to compute topological invariants that ac-
curately predict the existence of boundary states in the
case of OBCs. The mPBCs by Imura and Takane, 2019



bear some similarity to the argument of imaginary flux
threading by Lee and Thomale, 2019: The mPBCs are
implemented through the inclusion of prefactors 7 and
r~% in the Hamiltonian that connects the two ends n = 1
and n = N, while the flux threading essentially intro-
duces a similar prefactor to the Hamiltonian. While this
mPBC method seems to be similar to the non-Bloch BBC
introduced by Yao and Wang, 2018, there is nevertheless
a subtle difference: To establish the non-Bloch BBC ref-
erence is made to a system with OBC to find the relevant
8 needed to compute the non-Bloch topological invari-
ants. In the context of mPBC, by contrast, no reference
to OBC is required to find the topological invariants.
Alternative perspective: Singular value spectrum.—
Herviou et al., 2019a,b; and Porras and Fernandez-
Lorenzo, 2019 proposed to infer the topological phase
diagram and the existence of boundary modes by a sin-
gular value decomposition (SVD). There the role of the
eigenvalues of a NH matrix is replaced by its singular val-
ues that do not exhibit the aforementioned spectral in-
stability, and the counterpart of the eigenvectors may be
directly inferred from the transformation matrices of the
SVD. This allows not only for the stable computation of
topological invariants, which are constructed by making
use of a generalized flattened singular decomposition, but
also for a generalization of the concept of the entangle-
ment spectrum to the realm of NH models (Herviou et al.,
2019a). However, the SVD approach leads to a restora-
tion of ¢cBBC, even in models where ¢cBBC is found to be
broken when studying the eigenvalue spectrum. Thus,
the exotic features displayed by ¢cBBC-breaking models
are not fully captured within the SVD perspective.
Symmetries.—The influence of symmetries on BBC in
NH has been widely studied (Brzezicki and Hyart, 2019;
Esaki et al., 2011; Kawabata et al., 2019¢; Kunst and
Dwivedi, 2019; Lieu, 2018a) (see also Sect. IT11.A.2), and
c¢cBBC has been shown to be preserved in a number of
symmetric NH models. For example, Esaki et al., 2011
showed that even though the spectrum of NH systems
generically is complex, it is possible to find topological
invariants from the Bloch Hamiltonian that accurately
predict the existence of boundary states in the real part
of the spectrum for specific lattice models, which ei-
ther feature pseudo-Hermiticity [cf. Eq. (17) with Q_]
or time-reversal symmetric with the time-reversal oper-
ator T [cf. Eq. (14)]. In some NH systems even the
TRS of type T leads to a generalized Kramers theo-
rem (Sato et al., 2012). A related form of the pseudo-
Hermitian symmetry ()_ was investigated by Brzezicki
and Hyart, 2019, who studied a special form of NH chi-
rality, i.e., SH(k)S = —HT(k). By considering one-
dimensional models in the presence of this symmetry, a
hidden Chern number can be defined that determines
the number of end states whose real part of the energy
is zero. There the imaginary part of the energy is used
as a second dimension, which offers a new perspective
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on the definition of topological invariants in NH mod-
els. Lee, 2016 and Leykam et al., 2017 also studied chiral
symmetry and found half-integer winding numbers char-
acterizing the EPs in the spectum. Lieu, 2018a studied
both chiral symmetry and PT symmetry in the context
of NH variations to the SSH model, and topological in-
variants derived from the Bloch Hamiltonian have been
found in both cases. More specifically, a global invari-
ant can be defined in the PT-symmetric case, while a
quantized complex Berry phase exists in the case with
chiral symmetry. With the more recent studies of the
NH model in Eq. (22), which is also chirally symmetric,
however, we know that such a complex Berry phase can-
not always be found, or at least needs to be modified by
using the techniques developed in the non-Bloch setting
(Yao et al., 2018; Yao and Wang, 2018; Yokomizo and
Murakami, 2019).

4. Summary: A unified picture

Having reviewed various complementary approaches to
reestablishing the BBC in NH systems, we now summa-
rize the different methods by drawing a unified picture.
Whereas the main approaches introduced by Kunst et al.,
2018 and by Yao et al., 2018 and Yao and Wang, 2018,
respectively, have different vantage points, we stress that
they lead to identical predictions in full agreement with
a wide range of explicit model calculations.

While Kunst et al., 2018 took a direct cue from the
properties of systems with OBCs and examined the
(de)localization transitions of the biorthogonal wavefunc-
tions, Yao et al., 2018 and Yao and Wang, 2018 instead
augmented the Bloch Hamiltonian with information from
the OBCs leading to a generalized Brillouin zone (often
called non-Bloch) description that relates more directly
to the familiar picture of the cBBC in terms of topologi-
cal invariants. The biorthogonal approach, on the other
hand, offers additional physical insights in terms of a
quantized polarization and reveals the key role played by
the interplay between left and right wave functions, a dis-
tinction that is inherently NH. Taken together they thus
offer a comprehensive framework and physical intuition
for cBBC-breaking NH models. Moreover, despite their
differences in appearance, these approaches do share the
emphasis on a wave-function ansatz, which were also uti-
lized and expanded on by Imura and Takane, 2019; Kunst
and Dwivedi, 2019; and Lee and Thomale, 2019.

Several recent works have corroborated and elucidated
the non-Bloch approach either by making the Bloch mo-
mentum complex (Kunst and Dwivedi, 2019; Yokomizo
and Murakami, 2019), or by applying mPBCs (Imura and
Takane, 2019). Complementing this perspective Borgnia
et al., 2020 and Zirnstein et al., 2019 made a direct con-
nection to OBCs thus being conceptually more in line
with biorthogonal approach, while work by Kunst and



Dwivedi, 2019 and Lee and Thomale, 2019 interpolated
between PBC and OBC cases, and may as such be seen
as a bridge between the approaches using Bloch Hamil-
tonians and those using OBC descriptions.

IV. PHYSICAL PLATFORMS

We now give an overview of experimental platforms
for the observation of NH topology, reflecting the range
of physical incarnations of the genuinely NH phenomena.

A. Non-Hermitian wave equations: From classical
mechanics to quantum walks

Intense research in recent years has unraveled classical
analog of topological phases in a variety of settings rang-
ing from photonics (Haldane and Raghu, 2008; Ozawa
et al., 2019; Raghu and Haldane, 2008) to electric cir-
cuits (Albert et al., 2015; Lee et al., 2018a; Ningyuan
et al., 2015) and mechanical systems (Huber, 2016; Kane
and Lubensky, 2014). Guided by the intuition from ideal
dissipation-free scenarios, such analogs were initially es-
tablished for nearly Hermitian systems. However, in all
of these settings non-Hermiticity actually occurs natu-
rally, reflecting the ubiquitous role of dissipation. Indeed,
the profound conceptual advances in understanding NH
topological phenomena as discussed in this review have
been closely accompanied by corresponding experiments
in all of the aforementioned platforms. In these clas-
sical systems, the analogy with Hamiltonian QM may
manifest in a number of different ways: Some settings,
including optical waveguides, directly mimic the time-
dependent Schrodinger equation, while in photonic crys-
tals and acoustic systems the eigenmode problem is tan-
tamount to the Bloch problem familiar from quantum
systems with a periodic potential. Similarly, in robotic
mechanical metamaterials the analog of a QM Hamilto-
nian is directly given by an asymmetric dynamical ma-
trix, while in electrical circuits the analogy is on the level
of response functions. While we refer to the original work
for details, we outline here some of the basic ideas be-
hind the various experimental applications to make this
overview more self-contained.

1. Photonics

Photonics is arguably the area in which NH topology
has thus far found most applications. For an in-depth
account on mostly Hermitian topological photonics see
the recent review given by (Ozawa et al., 2019). We
highlight here a few systems with particular relevance to
the genuinely NH phenomena.

We begin with photonic crystals, in which the basic
idea is to create metamaterials with spatially varying
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but periodic dielectric permittivity €;;(x) and magnetic
permeability p;;(x) (Joannopoulos et al., 2008). In this
setting the electrodynamic eigenmodes of Maxwells equa-
tions are subject to Bloch’s theorem in a manner simi-
lar to how it applies to electrons in crystalline solids.
Inspired by the seminal theoretical proposal for pho-
tonic analogs of quantum Hall states due to Haldane
and Raghu, 2008 and Raghu and Haldane, 2008 and
subsequent refinements by Wang et al., 2008, classical
analogs of topological states have been realized in gyro-
magnetic photonic crystals, which explicitly break time-
reversal symmetry (Lu et al., 2013; Wang et al., 2008). In
these systems gain and loss is ubiquitous and NH topo-
logical phenomena have been experimentally realized in-
cluding a spectacular observation of Fermi arcs connect-
ing EPs (Zhou et al., 2018) as theoretically described
in Sec. I1.B, as well as a demonstration of one-sided in-
visibility in PT-symmetric metamaterials (Feng et al.,
2013) predicted to occur in PT-symmetric materials op-
erating at an EP (Jones, 2012; Kulishov et al., 2005; Lin
et al., 2011; Longhi, 2011), which had also been shown in
a scattering experiment (Regensburger et al., 2012); cf.
Sect. IV.B. Recent theoretical work has suggested that
the Maxwell waves existing on the interfaces separating
lossless media with different signs in the permittivity and
permeability have topological properties that are related
to the properties of a NH helicity operator (Bliokh et al.,
2019) thus further highlighting the NH character of pho-
tonic crystals.

Photonic crystals belong to the larger experimental
platform of optical microresonators, also known as mi-
crocavities (Vahala, 2003). The performance of such
resonators is captured by the @ factor, which is pro-
portional to the lifetime of a photon inside the cavity
and is strongly dependent on the properties of the in-
terface between the cavity volume and the outside. A
coupled-microresonators setup with auxiliary resonators
with gain and loss has been proposed to realize the
Hatano-Nelson model (Longhi et al., 2015), whereas ac-
tive steering of topological light has been demonstrated
in two-dimensional lattices of microresonators with re-
configurable gain and loss domains (Zhao et al., 2019).
One prominent example of optical microcavities with
high @ factors is that of whispering-gallery-mode res-
onators (WGMRs) (Gorodetsky et al., 1996; Knight
et al., 1995; Lefevre-Seguin and Haroche, 1997; Vernooy
et al., 1998a,b), which derive their name from their acous-
tical counterpart: Electromagnetic waves are captured in
the cavity because of total internal reflection.

Recently NH experimental setups of such WGMRs
were proposed and observed to exhibit unidirectional las-
ing (Peng et al., 2014, 2016), single-mode lasing in PT-
symmetric setups (Feng et al., 2014; Hodaei et al., 2014),
and enhanced sensitivity against perturbations in cavities
operating at second-order EPs (Chen et al., 2017) due
to the nonanalytic behavior of their dispersion (Wiersig,



2014). Similar behavior has also been demonstrated in
higher-order EPs realized in an arrangement of coupled
microring resonators (Hodaei et al., 2017).

Optical resonators operating at microwave frequencies
are known as microwave cavities, and recently the dy-
namical encircling of second-order EPs was studied in
such a setup, revealing experimental signatures of mode
switching (Doppler et al., 2016) (as we saw in the min-
imal example in Sec. I). Additionally, open microwave
disks form an ideal platform to study the quantum-
classical correspondence in open systems, and experi-
ments on such models demonstrate that classical quanti-
ties can describe their quantum properties and vice versa
(Barkhofen et al., 2013; Lu et al., 1999; Pance et al., 2000;
Potzuweit et al., 2012).

Coupled wavequides provide another versatile setting
that, instead of simulating static properties, directly em-
ulates the time evolution of tailor-made lattice models
(Christodoulides et al., 2003; Davis et al., 1996; Longhi,
2009). The waveguides are routinely inscribed in silica
glass using femtosecond lasers and have the additional
appealing feature that they operate well at optical fre-
quencies visible to the human eye (Szameit and Nolte,
2010). Here Maxwell’s equations describing the propa-
gation of light in the z direction amount to the paraxial
equation
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which is formally identical to the two-dimensional
Schrédinger equation with the propagation direction z
playing the role of time ¢, and the wave function & is
the envelope of the electric field polarized along e such
that E(z,y,2) = E(x,y,2)e'">~“Ye is assumed to be
slowly varying in the sense that |VE&| < |ko&|, with ko ~
k. > kg, The effective potential V(z,y) « An(z,y)
can be tailor-made by carving waveguides using accurate
femtosecond lasers, which create a strong spatial depen-
dence of the local refractive index An(z,y). In the limit
of spatially sharp carving and weak evanescent coupling
between the waveguides, this system is accurately mod-
eled by a tight-binding Hamiltonian whose hopping pa-
rameters depend on the setup and the wavelength A\ of
the light. This setup has been harnessed to emulate a
large number of Hermitian topological phases (El Has-
san et al., 2019; Noh et al., 2018, 2015; Rechtsman et al.,
2013) and, including staggered patterns of gain and loss
in the wires, the time evolution of effectively NH mod-
els has also been successfully simulated. This includes
the experimental realization of exceptional rings (Cer-
jan et al., 2019) (cf. Sec. I1.B), defect states in NH-SSH
chains (Weimann et al., 2017) (cf. Sec. II1.A.4), topo-
logical phase transitions (Zeuner et al., 2015), and PT-
symmetric flatbands (Biesenthal et al., 2019), whereas a
study of the stability of corner states against gain and
loss has also been proposed (Ozdemir and El-Ganainy,
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2019). Here it is worth noting that passive systems with
only staggered loss, such as that from waveguides of al-
ternating quality, is sufficient to generate such phases:
Although the energies are confined to the lower com-
plex half plane, a global shift can make the system ef-
fectively PT symmetric in a description, where the less
lossy waveguides thus effectively experience gain (Feng
et al., 2013; Guo et al., 2009; Kremer et al., 2019; Ornig-
otti and Szameit, 2014; Weimann et al., 2017). Further-
more, a truly PT-symmetric system has been realized
by making use of optical fibers by Regensburger et al.,
2012, where the use of optical amplifiers and modulators
allows for the realization of a PT-symmetric structure in
the temporal domain.

2. Mechanical systems

Mechanical systems represent another experimental
medium with which NH phases can be realized. One
such system is provided by mechanical metamaterials
[see Bertoldi et al., 2017 and Huber, 2016 for recent
reviews|, which can be described as networks consist-
ing of masses that are connected via springs of rigid
beams and are governed by Newton’s equations. New-
ton’s equations of motion for a system of coupled os-
cillators & = —D;;x; + A;;&, with x; the oscillators, A
describing the nondissipative coupling between position
and velocity, and D the dynamical matrix capturing the
forces between oscillators, can be recast into the following
Hermitian eigenvalue problem:

a(57)- (s ) ()
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as detailed by Huber, 2016; Kane and Lubensky, 2014;
and Stsstrunk and Huber, 2015. Drawing from a for-
mal correspondence between Newton’s second law and
the Schrodinger equation, it is possible to realize topolog-
ical phases featuring phononic boundary states in these
setups. Indeed, topological phononic modes, which were
classified by Siisstrunk and Huber, 2016, have been re-
ported to appear at the boundaries of isostatic lattices
build with springs (Kane and Lubensky, 2014), at the
boundaries in models consisting of rotors and rigid beams
(Chen et al., 2014), at dislocations in kagome lattices
consisting of rigid plates (Paulose et al., 2015), and as
helical boundary states in a setup consisting of pendula
(Stisstrunk and Huber, 2015). When the masses are re-
placed by gyroscopes, one obtains a so-called gyroscopic
metamaterial, which has been shown to host acoustic
boundary waves analogous to the edge states of the quan-
tum Hall effect (Nash et al., 2015; Wang et al., 2015).

Inspired by these results and the connection between
the dynamical matrix and the Hamiltonian description
in these setups, one can conceive of NH phononic phases:



Starting from a generic NH Hamiltonian matrix with off-
diagonal elements ) and Q, the dynamical matrix is
defined as D = QQ (Ghatak et al., 2020). This way
of writing the dynamical matrix is in close analogy to
the method presented by Kane and Lubensky, 2014, who
study isostatic lattices, which are mechanically critical in
the sense that they are near collapse: The dynamical ma-
trix associated with the lattice is written as D = QQ7,
such that by taking the ‘square root’ one obtains the
associated Hamiltonian matrix, which has Q@ and Q7
as its off-diagonal elements. Such a dynamical matrix
for NH Hamiltonians (D = QQ), which is asymmetric
(D # DT), has been experimentally realized in robotic
metamaterials (Brandenbourger et al., 2019), which com-
bine robotics and active materials through building lat-
tices consisting of mechanical rotors, control systems,
and springs. In such setups, the NH skin effect has
been observed in a nonreciprocal realization (Branden-
bourger et al., 2019) as well as in a model similar to the
anisotropic SSH chain described in Sec. III.A.1 (Ghatak
et al., 2020). Both experiments thus probe the right
eigenstates of the model that they investigate. In a re-
cent work, Schomerus, 2020 showed by making use of
response theory that it is also possible to probe the left
eigenstates in these setups: Whereas right wave func-
tions specify the spatial distribution of the response of
the setup to an external excitation, the information on
the strength of this response with respect to where the
perturbation is located is captured by the left wave func-
tions. When considering the overall response, which in-
cludes contributions from both the right and left wave
functions, Schomerus, 2020 showed that the NH skin ef-
fect of the zero mode is related to a phase transition at
which the sensitivity to perturbations becomes critical in
the sense that it diverges. The inherent biorthogonal-
ity of these systems thus leaves experimental signatures
beyond the characteristic energy spectra. These two ex-
periments by Brandenbourger et al., 2019 and Ghatak
et al., 2020 also prompted the study of the NH skin ef-
fect in elastic lattices with nonlocal feedback interactions.
Rosa and Ruzzene, 2020 found that nonlocal control al-
lows for bulk waves to localize at different boundaries,
such that a judicious choice of interactions can result
in corner localization, as illustrated in two-dimensional
models. Scheibner et al., 2020b showed that an anti-
symmetric dynamical matrix D = —D7T can be realized
in mechanical metamaterials with odd elasticity, which
occurs due to non-energy-conserving microscopic inter-
actions in active media. The odd elasticity is predicted
to facilitate the onset of exceptional points for an over-
damped lattice as well as to sustain an elastic engine
cycle for an overdamped wave (Scheibuner et al., 2020b),
to allow for the appearance of bulk elastic waves at the
boundaries of one- and two-dimensional metamaterials
(Zhou and Zhang, 2020), and to host a topological phase
transition mediated by the annihilation of exceptional
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rings in active as well as gyroscopic metamaterials with
gain and loss (Scheibner et al., 2020a). In addition, a
recent realization of a NH phase in mechanical metama-
terials was reported on by Yoshida and Hatsugai, 2019,
who proposed that exceptional rings appear in mechani-
cal metamaterials with friction.

A notion of phononic or acoustic materials (Kush-
waha et al., 1993) and metamaterials beyond the pre-
viously outlined dynamical matrix formalism outlined
above also exists and may come in many forms. Such
systems have been shown to host phononic edge states in
microtubules (Prodan and Prodan, 2009), quantum-spin-
Hall edge states in the form of elastic waves (Mousavi
et al., 2015), and surface acoustic waves with negative
refraction index on the surfaces of a phononic version of
a Weyl semimetal (He et al., 2018). Acoustic waves may
also propagate through fluids, and a setup consisting of
rotating fluids arranged in a crystal was predicted to re-
alize the chiral edge states of the quantum Hall effect
(Yang et al., 2015). This experimental platform can be
used to realize NH phases through the judicious imple-
mentation of gain and loss. Indeed, Shi et al., 2016 real-
ized a PT-symmetric model where gain is implemented
via coherent acoustic sources in which they acquire full
control of the EP and the accompanying unidirectional
transparancy. A PT-symmetric acoustic metamaterial
was also realized by Aurégan and Pagneux, 2017 in an
airflow duct with gain and loss implemented through the
scattering of acoustic waves of diaphragms. Similarly,
Rivet et al., 2018 showed that acoustic waves with con-
stant pressure can exist in acoustic waveguides with gain
and loss, while Zhu et al., 2018 realized an EP in a lossy
acoustic system and demonstrated unidirectional propa-
gation. Additional theoretical proposals have been made
for the realization of PT-symmetric second-order topo-
logical phases in acoustic metamaterials with gain and
loss (Rosendo Lépez et al., 2019; Zhang et al., 2019b),
and invisible acoustic sensors with PT' symmetry (Fleury
et al., 2015).

3. Electric circuits

Electric circuits provide another classical platform for
the realization of NH topology (Albert et al., 2015;
Ningyuan et al., 2015). There, instead of properties of
a Hamiltonian, one directly studies response functions,
where capacitors and inductors act as Hermitian elements
and resistors as well as amplifiers are anti-Hermitian. As
a specific example, a current depending on frequency w
flowing through a node i is governed by

Li(w) = an<w>vj<w>,

where I;(w) and V;(w) are the input current and poten-
tial at node 4, respectively, and Y;;(w) is the admittance



matrix or, equivalently, the inverse impedance matrix
[Z71(w)]i;. Specifically, Y;;(w), with i # j, is the admit-
tance between nodes ¢ and j, and Y;;(w) is the admittance
between node ¢ and the ground (Ningyuan et al., 2015).
This relation can be derived by making use of current
conservation, i.e., the total input current needs to equal
the total output current, which amounts to Kirchhoff’s
circuit laws.

The periodicity of the electric circuit structures allows
for the use of Bloch’s theorem to find wave functions,
while the band structure of the circuits corresponds to
the eigenvalues of the admittance Y;;(w) up to a prefac-
tor. As such, one can interpret the admittance matrix
Y;;(w) as a Hamiltonian matrix. Through the arrange-
ment of capacitors, inductors, and other electronic build-
ing blocks available in this toolbox, it is thus possible
to design circuits that mimic the physics of topologically
nontrivial models. This idea was introduced by Ningyuan
et al., 2015 and has been used to build topological circuits
whose band structures, i.e., admittance eigenvalues, also
realize the band topology of the Hofstadter model (Albert
et al., 2015; Ningyuan et al., 2015) in the Mobius strip
configuration (Ningyuan et al., 2015). More recently the
SSH chain and a two-dimensional extension thereof as
well as a Weyl semimetal spectrum were reported on by
Lee et al., 2018a, whereas corner states were realized in
two-dimensional setups by Imhof et al., 2018.

These realizations of Hermitian topological phases in
electric circuits have paved the way to the fabrication
of NH versions thereof. Indeed, by making use of re-
sistors and amplifiers, the NH-SSH model in Eq. (22)
was realized recently by Helbig et al., 2020, who cor-
roborated the theoretical predictions. The NH skin ef-
fect was subsequently also measured by Hofmann et al.,
2020. Additional proposals have been put forward for
the realization of NH honeycomb lattices with PBCs
(Luo et al., 2018), NH Chern insulators (Ezawa, 2019b;
Hofmann et al., 2019), higher-order topological mod-
els with NH skin states localized to lower-dimensional
boundaries (Ezawa, 2019¢,d), a quantum-walk simulation
(Ezawa, 2019a) (see Sec. IV.A.4), the realization of three-
dimensional Seifert surfaces in four-dimensional circuit
setups (Li et al., 2019), as well as the implementation
of a pseudomagnetic field to probe exceptional Landau
levels in NH Dirac and Weyl systems (Zhang and Franz,
2020).

4. Quantum walks

Quantum walks, which represent a conceptual frame-
work rather than being limited to an experimental plat-
form, provide another means to simulate and probe NH
topological phases. Quantum walks can be seen as the
quantum version of classical random walks, where the
“coin flip,” which introduces the classical randomness by
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determining the trajectory of a particle, is replaced by a
coin operator acting on the internal degrees of freedom
of a particle, also known as the “walker.” The concept
of the quantum walk was introduced by Aharonov et al.,
1993, and quantum walks have been realized in several
experimental platforms, such as trapped atoms (Karski
et al., 2009), trapped ions (Schmitz et al., 2009; Z&hringer
et al., 2010), optical fiber networks (Broome et al., 2010;
Schreiber et al., 2010), and nuclear-magnetic resonances
(Ryan et al., 2005).

The dynamics of a quantum walk is captured by a Flo-
quet operator U, which depends on the coin operator and
is related to a time-independent effective Hamiltonian
Hog via U = exp(—iHeg). Through a suitable choice of
U, the effective Hamiltonian H.g can be made topologi-
cally nontrivial, resulting in the appearance of topological
phases in quantum walks as predicted in theory (Asbéth,
2012; Kitagawa et al., 2010) and as shown experimentally
in discrete-time quantum walks (Barkhofen et al., 2017;
Cardano et al., 2016; Flurin et al., 2017; Kitagawa et al.,
2012; Ramasesh et al., 2017) [see Wu et al., 2019 for a
recent review], where the Floquet operator U is applied
to the walker at discrete time steps.

By instead considering a nonunitary Floquet operator
U, the effective Hamiltonian H.g of the model is NH,
and it is thus possible to study NH phases. This idea
was introduced by Rudner and Levitov, 2009 for a NH-
SSH model with loss on every other site, thus realizing
a passive version of a PT-symmetric SSH chain, where
it is shown that the average displacement of the particle
is quantized and associated with a topological invariant.
Experiments on such nonunitary quantum walks reveal
the existence of topological edge states at domain walls
in a PT-symmetric SSH chain in an optical setup with
balanced gain and loss (Xiao et al., 2017), as predicted
in theory (Mochizuki et al., 2016). Zhan et al., 2017 de-
tected topological invariants, Wang et al., 2019b studied
dynamic quantum phase transitions in a PT-symmetric
system, Wang et al., 2019a observed skyrmions in a PT-
symmetric nonunitary quantum walk, and Longhi, 2019b
predicted the appearance of the NH skin effect and a
symmetry-breaking phase transition in a PT-symmetric
discrete-time nonunitary quantum walk. Models with
anisotropic hoppings have also been realized in a discrete-
time nonunitary quantum-walk setup, where the NH skin
effect has been explicitly detected (Weidemann et al.,
2020; Xiao et al., 2020).

B. Quantum many-body systems

While most early applications of NH topology were
based on classical physics and single-particle quantum
mechanics, non-Hermiticity also plays an important role
in genuinely quantum mechanical many-particle systems.
Indeed, the study of NH Hamiltonians in this context



has a long history of applications, such as in nuclear and
atomic physics (Breit and Wigner, 1936; Fano, 1961; Fes-
hbach, 1958; Feshbach et al., 1954; Majorana, 1931a,b;
Rotter, 2009). More recently, the relevance of these
Hamiltonians to topological phases has been investigated
in several quantum many-body platforms as outlined
next.

1. Open systems

Quantum master equations.—The most natural source
of non-Hermiticity in quantum many-body systems is
the quantum dissipation induced by coupling the sys-
tem to its environment. A realm of direct relevance
involves quantum optical setups and ultracold atomic
gases, where experiments are often carried out in the
regime of a weak coupling to a Markovian reservoir repre-
sented by the continuum of surrounding electromagnetic
field modes. In such situations, the relevant equation
of motion for the reduced density matrix p of the open
system is the Lindblad master equation (Lindblad, 1976)

) 1
0= ilp. 11+ Y (Luptl, ~ J{ELLwr)) . (30

where the jump operators L, account for the coupling
to the environment. Focusing mostly on the case of
pure dissipation (H = 0), the dissipative preparation of
topological states within the full Lindblad setting has
been investigated (Bardyn et al., 2013; Budich et al.,
2015; Diehl et al., 2011; Goldstein, 2019; Tonielli et al.,
2020). However, owing to the complexity of the Lind-
blad master equation, a different approach is desirable
for obtaining an intuitive understanding of the inter-
play between coherent quantum dynamics, dissipation,
and topology in complex quantum many-body systems.
To this end, one useful approach is to note that the
Lindblad equation can conveniently be written as d;p =
i(pH;rff — Hegp) + >, LnpLl, where the effective NH
Hamiltonian

i
_g_ t
Hex = H — § LiL, (31)

describes the dynamics at short times (Carmichael,
2014). At longer times the so-called jump (or recycling)
term > L, pL}, accounting for the actual occurrence of
quantum jumps can typically no longer be neglected. In
the general situation this thus leads to decoherence (and
hence mixed states), while the effective non-Hermitian
description is by construction in terms of less general
pure states. Nevertheless, the relevance of NH Hamiltoni-
ans for Lindblad systems reaches far beyond the obvious
realm at short lifetimes: It is easy to construct intriguing
examples where the steady state of the Lindblad equa-
tion is identical to the ¢ — oo state resulting from the
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nonunitary time evolution of an effective NH Hamilto-
nian. A simple and constructive way of achieving this is
to reverse engineer models using the condition L, |1)) =0
(Diehl et al., 2011), which in effect can target for exam-
ple the ground state |1)) of a model Hamiltonian with
a suitable choice of the Lindblad jump operators. This
approach is particularly well suited for preparing topo-
logical phases that quite generically have parent Hamil-
tonians composed of noncommuting terms that can nev-
ertheless be simultaneously minimized. This may serve
as an efficient way of harnessing dissipation and the intu-
ition from NH Hamiltonians to realize essentially Hermi-
tian topological phases. It is also worth noting that the
effective Hamiltonian (31) has eigenvalues in the lower
complex half-plane Im[E] < 0. This highlights the fact
that the Lindblad equation, even in the regime accurately
captured by Eq. (31), imposes a fundamental constraint
on eligible NH Hamiltonians relative to the fully generic
case; see Section II.D.

For Gaussian systems described by a Lindblad equa-
tion that is quadratic in the field operators, there is an-
other way of systematically deriving an effective NH de-
scription in terms of a damping matrix Hp (Eisert and
Prosen, 2010; Prosen, 2010). Complementary with the
previously mentioned Heg, the NH matrix Hp governs
how deviations from the steady state are damped out,
thus describing the long-time limit of the Lindblad equa-
tion. These two effective NH matrices have been shown
to generally differ in their topological properties (Song
et al., 2019a). In the context of Gaussian Lindbladians,
genuinely NH phenomena have recently been discovered
(Hatano, 2019; Lieu et al., 2020; Song et al., 2019a). A
salient example along these lines is that the phenomenol-
ogy of the non-Hermitian skin effect carries over, mu-
tatis mutandis, to the more fundamental Lindblad setting
(Song et al., 2019a) where it had previously been over-
looked. Moreover, exceptional points also appear nat-
urally within the Lindblad master equation framework
(Hatano, 2019), and certain classes of quadratic Lind-
blad operators admit a classification analogous to that of
NH Hamiltonians (Lieu et al., 2020).

Material junctions in quantum transport setups pro-
vide another generic and conceptually clear electronic
setting for realizing NH topological phases; see Bergholtz
and Budich, 2019 for a detailed discussion. In fact, the
well-established theory of quantum transport that has
been used and experimentally tested over decades of in-
tense research is entirely based on NH physics; see Datta,
2005. A more recent development is essentially the per-
spective that these problems can be recast in the system-
atic context of NH topology, which has already inspired
suggestions for novel phenomena in experimentally acces-
sible solid-state setups. We now consider such a setup,
where one side of the junction is considered to be a ther-
mal reservoir (lead), which induces a self-energy on the
surface of the system, thus leading to the effective NH



system Hamiltonian
Hyn = H + X7 (w), (32)

where H is the Hermitian Hamiltonian of the isolated
system and X7 (w) denotes the retarded self-energy at
energies w close to the chemical potential reflecting the
coupling to the lead. Owing to causality all eigenvalues
of 37 (w) reside in the lower half plane Im[E] < 0. Since
Y7 (w) is generically non-Hermitian and matrix valued,
it can have drastic implications for the topology of the
interface states. This has been investigated in the con-
text of superconducting junctions featuring EPs (Avila
et al., 2019; Pikulin and Nazarov, 2012, 2013; San-Jose
et al., 2016) as well as in interfaces between topological
insulators coupled to ferromagnetic leads (Bergholtz and
Budich, 2019; Chen and Zhai, 2018; Philip et al., 2018).
In the latter case, the Hall conductance in the gapped
phase loses its quantization (Chen and Zhai, 2018; Philip
et al., 2018) thus signaling a breakdown of the topological
nature of the system that is well known from the Hermi-
tian limit. However, the non-Hermiticity of this setup can
also promote the topological properties: While the ferro-
magnet breaks time-reversal symmetry, one would expect
it to generally open a gap in the surface theory. As shown
by Bergholtz and Budich, 2019, there is a critical angle
of the magnetization beyond which the dissipation over-
comes the gap, thus promoting the symmetry-protected
surface topology to a nodal NH topological phase with
EPs and NH Fermi arcs that does not rely on any sym-
metry.

Photonic and hybrid systems also feature NH topology
in the quantum regime. An example of this is the concept
of topological lasers (Bahari et al., 2017; Bandres et al.,
2018; Harari et al., 2018; Longhi, 2018; Longhi and Feng,
2018; Parto et al., 2018; St-Jean et al., 2017; Zhao et al.,
2018). Lasers fundamentally depend on gain and the
basic idea of topological lasers thus includes ingredients
of topology, quantum mechanics, and non-Hermiticity.

NH topology may also appear in less obvious ways, as
exemplified in the bosonic Bogoliubov-de-Gennes (BdG)
problem, which occurs naturally in various settings rang-
ing from photons under parametric driving (McDonald
et al., 2018) to exciton polariton systems (Bardyn et al.,
2016) and cold atomic gases (Barnett, 2013). Although
superficially identical to the fermionic BAG problem well
known from the theory of superconductivity, the transfor-
mation needed to diagonalize the BdG Hamiltonian for
bosons is paraunitary rather than unitary and the cor-
responding spectra are not generally real. Indeed, para-
metric instabilities corresponding to complex eigenvalues
are known to occur in several experimentally relevant
settings (Barnett, 2013; Galilo et al., 2015; Peano et al.,
2016a,b; Shi et al., 2017). As such, these provide a dis-
tinct raison d’étre for NH classification schemes, as ob-
served by Lieu, 2018b. We note that a generic mapping
between parametrically driven Hermitian bosonic models
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and non-Hermitian Hamiltonians beyond the BdG for-
malism also exists and can be used to realize NH topo-
logically nontrivial models in Hermitian bosonic setups
(Wang and Clerk, 2019).

Shaken cold atoms in optical lattices provide yet an-
other platform for topological physics (Eckardt, 2017)
and atomic losses can in principle trigger the NH skin
effect (Li et al., 2020).

2. Emergent dissipation in closed systems

At a global level, a closed quantum mechanical sys-
tem undergoing unitary time evolution does not feature
dissipation. However, local observables in interacting
quantum many-body systems obey nonlinear equations
of motion, thus effectively leading to dissipative dynam-
ics. In this context, it has been proposed that dissipa-
tion in the form of emergent non-Hermiticity can have
a profound impact on the low-energy description of in-
teracting and disordered quantum matter (Kozii and Fu,
2017; Michishita and Peters, 2020; Yoshida et al., 2018;
Zyuzin and Zyuzin, 2018). Phenomenologically, this sce-
nario is reminiscent of the concept of eigenstate thermal-
ization (Deutsch, 1991; Srednicki, 1994), a generic feature
of nonintegrable quantum systems with a large number
of degrees of freedom, where the system acts as its own
thermal bath for local observables. In the present con-
text, quasiparticles with a given momentum scatter off
each other or at impurities and thereby acquire a finite
lifetime. The corresponding self-energy is non-Hermitian
and, when sufficiently generic, one may thus for example
expect it to feature exceptional degeneracies and their
concomitant phenomenology as discussed in Sec. 11.A.2.

Along these lines, suggestions about emergent topo-
logical NH phenomena have been put forward in heavy
fermion systems, which are natural due to the extreme
renormalization of the bare electron properties (Yoshida
et al., 2018), in nodal semimetals, which, according to the
general discussion in Sec. II.B.1, provide an ideal setting
for NH nodal phases (Kimura et al., 2019; Moors et al.,
2019; Yoshida et al., 2019b; Zyuzin and Simon, 2019;
Zyuzin and Zyuzin, 2018), in strongly correlated Kondo
materials (Michishita et al., 2020), and for magnons (the
spin-wave excitations of quantum magnets), which pro-
vide another natural platform for NH topology as ex-
plored by McClarty and Rau, 2019. Bosonic BAG Hamil-
tonians also occur in the context of magnons, which pro-
vides an alternative way of arriving at NH phenomenol-
ogy, such as in ferromagnetic materials (Shindou et al.,
2013), along the lines previously discussed in the context
of open systems.

Related ideas of emergent EPs were also put for-
ward early on in the context of nodal-line semimetals
in the presence of an external magnetic field (Molina
and Gonzélez, 2018) and radiated by circularly polarized



light (Gonzélez and Molina, 2017). Furthermore, the in-
terplay between non-Hermiticity and superconductivity
at the level of toy models has been investigated (Ghatak
and Das, 2018). Finally, we note that even when starting
from entirely Hermitian systems, physical insights can be
gained by formally extending a given model into the NH
realm, as has been shown for Majorana wires (Mandal,
2015) and interacting spin systems (Luitz and Piazza,
2019).

V. CONCLUDING REMARKS

To summarize, bringing together insights from recent
literature, in this review we have discussed how re-
linquishing the assumption of Hermiticity qualitatively
modifies and enriches the notion of topological band
structures. Both novel NH topological phases and fun-
damental changes to the bulk-boundary correspondence
have been shown to be intimately related to the occur-
rence of exceptional degeneracies, a property unique to
the complex spectra of NH matrices. These insights
demonstrate that effective NH Hamiltonian approaches
can, despite their appealing conceptual simplicity, de-
scribe intriguing topological phenomena relating to the
presence of dissipation in both classical and quantum sys-
tems. This is in line with earlier findings in the fully mi-
croscopic context of quantum master equations that dis-
sipation may be harnessed for the formation of ordered
states of matter (Diehl et al., 2008, 2011; Verstraete et al.,
2009) and is thus better than its destructive reputation
suggests. Despite the impressive recent progress, many
open questions remain in the rapidly evolving field of NH
topological matter. We close our discussion by pointing
out a few possible future perspectives.

Owing to the broad variety of experimental platforms
for NH topological systems (see Sec. IV), a natural quest
is to identify and experimentally implement potential
technological applications of topological robustness and
quantization in dissipative systems. As a promising step
in this direction, the analytical properties of exceptional
degeneracies have been reported to enhance the sensitiv-
ity of a particle detector (Chen et al., 2017; Hodaei et al.,
2017). Even though a direct gain in sensing precision
from the square-root dispersion around an EP has been
challenged (Langbein, 2018; Wang et al., 2020), the gen-
eral possibility of parametrically enhanced sensing due to
the vicinity of EPs was reported by Zhang et al., 2019a.
Recently, circumventing these issues as well as the neces-
sity of fine-tuning to an EP, the aforementioned sensitiv-
ity to boundary conditions of NH topological systems has
been harnessed for proposing a novel class of sensing de-
vices dubbed non-Hermitian topological sensors (Budich
and Bergholtz, 2020). Providing another path toward
new technology, topological lasers based on robust NH
boundary and interface states have been discovered (Ba-
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hari et al., 2017; Bandres et al., 2018; Harari et al., 2018;
Parto et al., 2018; St-Jean et al., 2017; Zhao et al., 2018).

The robust quantization of response properties, most
prominently exemplified by the celebrated quantum Hall
effect, is a salient feature of topological phases (Hasan
and Kane, 2010). In contrast, the immediate NH gener-
alization of a quantum Hall setting may lead to the loss
of a quantized conductance (Chen and Zhai, 2018; Philip
et al., 2018). However, numerous examples of topologi-
cal invariants entailing quantized observables in dissipa-
tive systems have been found (Hockendorf et al., 2019,
2020; Rudner and Levitov, 2009; Silberstein et al., 2020;
Tonielli et al., 2020), starting with the pioneering work
by Rudner and Levitov, 2009, who connected the quan-
tized expected displacement of a quantum walker sub-
jected to loss to a NH winding number. Despite this
progress, a general answer to the question as to what ex-
tent NH topological invariants lead to robustly quantized
observables largely remains elusive, and thus represents
an interesting subject of future research.

While the NH description of classical systems is satis-
factorily understood within a single-particle or wave pic-
ture, the conceptually more complex case of open quan-
tum many-body systems effectively described by a NH
Hamiltonian is still far from a conclusive description. A
few natural open questions in this context include the fol-
lowing: () The precise relation between different levels
of description, ranging from exact Liouvillian quantum
dynamics to effective NH Hamiltonians, particular in the
context of topological properties. (i) The presence of
new topological phases beyond the independent parti-
cle picture: While intriguing NH effects in interacting
systems have been reported (Carlstrom, 2020; Hanai and
Littlewood, 2020; Lee et al., 2020b; Liu et al., 2020; Luitz
and Piazza, 2019; Matsumoto et al., 2020; Mu et al.,
2020; Roncaglia et al., 2010; Shackleton and Scheurer,
2020; Yang et al., 2020a; Yoshida et al., 2019a), the explo-
ration of qualitatively new fractional topological phases
that may be seen as genuinely NH counterparts to frac-
tional quantum Hall states or spin liquids familiar from
strongly correlated Hermitian systems is still largely un-
charted territory.
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