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ABSTRACT • The paper presents a comparison between various methods of mode I critical stress intensity factor 
KIC calculations of beech wood in the TL configuration. The first method is the stress intensity factor extrapolation to 
the distance of 0 mm from the crack tip; the second method is the use of the J integral; and the third method is based 
on the differences in deformation energies from which the strain energy release rate per unit of crack propagation 
length was obtained. The fourth method is the calculation of material deformation around the crack or the displace-
ment of the triangle element node; and the fifth method uses a generally known equation for the CT specimen for 
plane-strain conditions in isotropic material. Using the finite element method, it was found that the J integral was 
least sensitive to the size and shape of the elements. It was used to calculate the critical stress intensity factor KIC for 
beech wood in a TL configuration. The average value is 0.56 MPa√m with a standard deviation of 0.047 MPa√m.

Keywords: fracture toughness, mode I critical stress intensity factor, fracture mechanics, beech wood

SAŽETAK • Rad donosi usporedbu različitih metoda izračuna faktora kritičnog intenziteta naprezanja (mod I.) KIC 
za bukovo drvo na tangencijalno-longitudinalnom (TL) presjeku. Prva je metoda ekstrapolacija faktora intenziteta 
naprezanja na udaljenosti 0 mm od vrha pukotine, druga je primjena, J integrala a treća se metoda temelji na raz-
likama energija deformacije iz kojih je dobivena brzina oslobađanja energije deformacije po jedinici duljine širenja 
pukotine. Četvrta metoda temelji se na izračunu deformacije materijala oko pukotine ili pomaka vrhova elementa 
trokuta, a peta se koristi općepoznatom jednadžbom za CT uzorak za deformaciju u ravnini izotropnog materijala. 
Koristeći se metodom konačnih elemenata, utvrđeno je da je metoda J integrala najmanje osjetljiva na veličinu i oblik 
elemenata. Ta je metoda primijenjena za izračun faktora kritičnog naprezanja KIC za bukovo drvo na TL presjeku. 
Dobivena je prosječna vrijednost od 0,56 MPa·√m, sa standardnom devijacijom od 0,047 MPa·√m.

Ključne riječi: lomna žilavost, faktor kritičnog intenziteta naprezanja (mod I.), mehanika loma, bukovina
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1 	INTRODUCTION
1. 	UVOD

Wood fracture has already been studied by sev-
eral researchers. Porter (1964) measured critical 
strain energy release rate GIC by measuring the force 
and length of crack in white pine. The specimens 
were TL and RL-oriented, which means that he load-
ed them in tangential and radial directions, respec-
tively, and the crack propagated in a longitudinal 
direction. He researched the influence of length, 
thickness, and height of the specimen, as well as the 
crack length. The method of determining the critical 
strain energy release rate GIC in pines was also stud-
ied by Stanzl-Tschegg et al. (1995). They calculated 
the strain energy release rate GI by integrating the 
energy or the area under the curve, which describes 
the force depending on the specimen mouth open-
ing. The energy obtained was divided by the size of 
the newly formed surface. Thuvander and Berglund 
(2000) researched pine fracture in the TR orienta-
tion. They stated that KIC of silver fir wood in the 
TR orientation was between 30 % and 50 % higher 
than that in the TL direction, while in the case of 
pine and spruce the difference was supposed to be 
even greater. As the newly formed surface proved to 
be equal in the TR and TL orientations, i.e., in the 
RL plane, they wanted to know the reason for such 
great differences in KIC. Fresh specimens were used 
because in dry specimens they encountered the 
problem of stable fracture due to microcracks re-
sulting from the drying process. According to them, 
a specimen that has been dried and humidified again 
has a more brittle fracture due to microcracks 
formed during the process of drying. Similar tests in 
the TR orientation were also performed by Frühman 
et. al. (2003).

The influence of the moisture content of wood 
on KIC was also researched by many researchers 
(Ozyhar et. al. (2012), Reiterer and Tschegg (2002), 
Scheffler et.al. (2004), Vasić and Stanzl-Tschegg 
(2007), Yeh and Schniewind (1992)). They found 
that with increasing moisture content, the critical 
stress intensity factor in the RL and TR orientation 
decreases. Vasić and Stanzl-Tschegg (2007) report a 
value of 0.9 MPa·√m with 6 % moisture content of 
beech wood in the RL configuration, and the value 
of 0.62 MPa·√m with 12 % moisture content.

In their work, Stanzl-Tschegg and Navi (2009) 
sum up their research of wood fracture in the RL 
configuration under various conditions such as 
moisture and density of wood, combined fracture 
modes I and II, and loading rate. They mention the 
work of Beikircher who thermally modified wood 
and found that thermal modification of beech de-
creases KIC for the TL configuration from 0.8 
MPa·√m to 0.6 MPa·√m. Likewise, Stanzl-Tschegg 
and Navi (2009) state that KIC in the RL orientation 
is higher compared to the TL orientation because of 
the ’bridging’ effect that the parenchyma causes in a 
radial direction. Majano-Majano et.al. (2012) found 

that KIC of thermally modified beech wood in RL 
and TL configuration decreases and found that the 
KIC for unmodified beech in TL configuration form 
ranged from 0.44 to 0.63 MPa·√m. 

To determine the fracture properties of wood, 
the majority of the aforementioned authors use the 
critical strain energy release rate GIC, determining 
the energy necessary for the formation of new sur-
faces on the basis of the force and mouth opening. A 
prerequisite for an experiment of this kind is a sta-
ble advance of the fracture, which means that the 
crack propagates in proportion to the crack mouth 
opening. However, the problem in the case of beech 
wood in the TL configuration is that after initiation 
the fracture process is distinctly unstable, during 
which the crack suddenly propagates to a certain 
unbalanced length. GIC does in fact express the en-
ergy to be put in per unit of the newly formed sur-
face, but provides little information about the frac-
ture initiation, which is of essential significance in 
cutting. Under certain conditions, the result can be a 
chip of type I, II, or III, as classified by Franz 
(Koch, 1985). Regarding the material which is 
turned into a chip, a type I chip is discontinued, 
formed by alternating fracture and bending failures 
(Merhar and Bučar, 2012). Whether the fracture un-
der the chip will progress or the chip will break de-
pends on the critical stress intensity factor for frac-
ture mode I. It was, therefore, decided to determine 
the KIC of beech wood for the TL configuration in 
the manner enabling a direct determination of the 
value. First, the KIC was going to be determined on 
one specimen using the five most frequently used 
methods. The results obtained were going to be used 
to determine the most suitable method that yielded a 
satisfactory result in a simple manner. The method 
obtained in this way would be used to determine the 
fracture toughness of the remaining specimens.

2 	MATERIAL AND METHODS
2.	MATERIJALI I METODE

Beech wood (Fagus sylvatica) specimens were 
taken from a peripheral part of one stem of 400 mm 
in diameter. The specimens moisture content was (9 
± 0.5) %, with a density of 630 kg/m3. A conven-
tional compact tension CT specimen (Hertzberg, 
1996) of 115 mm in length, 100 mm in height, and 
10 mm thick was made. 

The specimens were TL-oriented, which 
means that load was applied in a tangential direc-
tion, and the crack propagated longitudinally. Since 
the board used to make specimens was only 80 mm 
thick, an additional 10 mm thick strip of wood was 
glued to each side of the specimen. The glued-on 
strip was obtained from the immediate vicinity of 
the specimen so that it had similar mechanical prop-
erties. The obtained CT specimen was modified to 
enable the mounting of the crack mouth opening 
displacement meter as shown in Figure 1a.



......Merhar, Gornik Bučar, Bučar: Mode I Critical Stress Intensity Factor of Beech Wood... 

DRVNA INDUSTRIJA  64 (3) 221-229 (2013)� 223

A cut of approximately 56 mm in length was 
made in the specimen (Figure 1b). Then a razor blade 
was used to make a further 1 mm to 2 mm deep cut to 
obtain a sharp tip of the cut. After fracturing, the initial 
crack length was measured on each specimen.  

The crack mouth opening displacement meter 
was made of two 1 mm thick and 90 mm long spring 
steel gauges. The length of the gauges was determined 
so as to make the meter measuring range of 10 mm, 
whereby the stress inside the gauge as a result of bend-
ing did not exceed 200-300 MPa. In this case each 
gauge was deformed by 5 mm. Strain gauges type 
3/120LG11 produced by HBM, with the resistance of 
120 W, were glued on the upper and lower side of both 
steel gauges, at the beginning or at the place of the 
maximum bending moment, and connected to the MES 
HPSC 3102 amplifier with full-bridge configuration. 
The displacement meter was calibrated by means of a 
reference dial gauge with the accuracy of 0.01 mm.

The specimen was placed on the tensile testing 
machine where the loading force was measured by a 
dynamometer, and the crack mouth opening displace-
ment was measured by the previously described dis-
placement meter. Data were captured by means of a 
personal computer, NI PCI-6014 measurement card 
and LabView software by National Instruments. The 
data capturing rate was 200 Hz, and the mouth opening 
velocity 15 mm/min. 

The intersection of the measured data and a 
straight line with a 5 % smaller angle than the straight 
line representing a linear regression curve of the initial 
elastic part of the specimen loading, as laid down by 
the ASTM E 399 standard, was read from the measured 
data. At the same time the maximum force measured 
was read. When the maximum force was greater than 
the intersection of the measured data and straight line, 
or the difference between the value at the intersection 
and the maximum measured value was minimal, the 

maximum force measured was taken into account for 
the calculation. 

The specimen was modelled by the finite element 
method using the Ansys program. The orthotropic 
properties of the wood were taken into consideration. 
The measured modulus of elasticity in a longitudinal 
direction, which has the greater influence on the KIC 
calculation, was used in the model, while the data for 
moduli of elasticity in other directions, shear moduli 
and Poisson’s ratios, which have minor influence on 
the KIC calculation, were taken from Kollmann and 
Cote (1984). Thus: 

EL = 14490 MPa, 
ET = 1140 MPa, 
ER = 2240 MPa, 
nLT = 0.518, 				       (1)
nTR = 0.36, 
nLR = 0.45, 
GLT = 1055 MPa, 
GTR = 460 MPa, 
GLR = 1600 MPa. 

Since the aim of the first part of the research was to 
investigate the accuracy of determining the mode I 
critical stress intensity factor KIC, the specimen was 
modelled with a linear elastic plane-strain state, where 
the modelled specimen thickness was 10. A PLANE183 
higher-order 2D, 8-node brick element was used. The 
specimen had elements of 2mm and 1mm in size, with 
a combination of finer elements around the crack tip or 
special triangle elements for calculating the stress at 
the crack tip with an intermediate node at ¼ of the ele-
ment’s length. The tip of the crack was surrounded by 
two rows of 12 triangle elements each, whereby the 
elements length was 0.1 mm or 1/1000 of the crack 
length. The ratio between the size of the first row and 
the second one was set as 1.5.

Figure 1 a) Experiment, b) Modified CT specimen
Slika 1. a) Skica eksperimenta, b) modificirani CT uzorak

a)  						      b)
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The mode I critical stress intensity factor KIC was 
calculated by five different and most frequently used 
methods of determining the critical stress intensity fac-
tor. The results of the comparison of these five methods 
were used to determine the most accurate and simple 
method, and this method was subsequently used to cal-
culate the critical stress intensity factor for the remain-
ing specimens.

The first method used to calculate the critical 
stress intensity factor KIC was the stress intensity factor 
extrapolation to the distance of zero using equation 2 
(Broek, 1989)

	          yr
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→
2lim

0
	           (2)

where r is the distance from the crack tip, and sy is 
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Since the specimen was TL-oriented, this means 
that it was loaded in a tangential direction, but due to 
tissue orientation the crack propagated in a longitudi-
nal direction, the angle q  in equation 3 equals 0. Only 
stresses in nodes lying in the crack propagation plane 
were thus taken into account in the calculation. 

Figure 2 Stresses at the crack tip
Slika 2. Naprezanja na vrhu pukotine

The second method of the critical stress intensity 
factor calculation used the J integral according to equa-
tion 4 (Broek, 1989) and Figure 3
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T is stress vector acting perpendicularly on con-
tour G, u is deformation vector, and ds is the G path 
differential.

Figure 3 J integral
Slika 3. J integral

The value of the J integral was calculated by 
means of the Ansys programme so that its contour or G 
contour nodes were defined. 

Since the specimen was modelled as linearly 
elastic, the value of J integral can be equalled with the 
elastic energy release rate G (Smith, 2003)
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for other coefficients were taken from Kollmann and 
Cote (1984) (equation 1).

The third method of the critical stress intensity 
factor calculation used the differences of strain ener-
gies, from which the strain energy release rate per unit 
of crack propagation length was obtained. First a crack 
with a measured length was modelled, and then anoth-
er with a longer crack. Differences in the lengths of 
modelled cracks ranged from 0.05mm to 0.35mm. The 
deformation energy of each modelled crack length was 
calculated by means of the programme. After that, the 
difference in the dWd energies between the specimen 
with the longer crack and the specimen with the meas-
ured crack was calculated. The difference was divided 
by the difference in lengths da and the thickness of the 
modelled specimen b. 
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Then the critical stress intensity factor was calculated 
considering equations 6 to 10. 

The fourth method of critical stress intensity fac-
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Figure 4 Triangle element with nodes
Slika 4. Elementi trokuta s čvorovima

Since the calculation takes account of the mate-
rial deformation on only one side of the crack, the 
method can be used only for symmetric specimens 
with a symmetric load application. In order for the cal-
culation to be as accurate as possible, only half of the 
specimen was modelled and on the lower side the pro-
gramme was set a boundary condition that the speci-
men was symmetric. The crack tip was surrounded by 
two rows of 6 triangle elements each, the elements be-
ing around 0.1 mm or 1/1000 of the crack length long. 
The ratio between the size of the first row and the sec-
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ond one was set as 1.5. The results were used to calcu-
late the deformation of nodes in directions x and y, and 
to calculate the critical stress intensity factor KIC for 
fracture mode I.

The fifth method of the critical stress intensity 
factor calculation used a generally known equation 
(Broek, 1989) applying to the CT specimen for plane-
strain conditions in isotropic material 
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where a is the crack length, W is specimen length and B specimen thickness. 

The specimens moduli of elasticity EL in a longitudinal direction were also measured. 

Specimens –130 mm long, 10 mm wide, and 6 mm high – were subjected to a four-point bending 

load on the tensile testing machine. A linear variable differential transformer (LVDT) was used to 

measure the specimen displacement during loading. 

From the graph of the measurements of force depending on deformation, the linear 

regression curve coefficient in the area of linear dependence between force and deformation was 

determined by means of the Excel programme. The equation describing the displacement in the 

middle of the specimen depending on the specimen geometric data and loading force was used to 

calculate the modulus of elasticity EL. 
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Figure 5 shows forces dependent on the crack 
mouth opening displacement of the specimen used to 
determine the critical stress intensity factor. The figure 
shows instantaneous force drop as a consequence of 
sudden crack propagation or an instable fracture. The 
figure clearly shows the linear elastic part of force de-
pendence on mouth opening, shifting to the nonlinear 
part just before the crack propagates. The continuous 

where a is the crack length, W is specimen length and 
B specimen thickness.

The specimens moduli of elasticity EL in a longi-
tudinal direction were also measured. Specimens –130 
mm long, 10 mm wide, and 6 mm high – were sub-
jected to a four-point bending load on the tensile test-
ing machine. A linear variable differential transformer 
(LVDT) was used to measure the specimen displace-
ment during loading.

From the graph of the measurements of force de-
pending on deformation, the linear regression curve 
coefficient in the area of linear dependence between 
force and deformation was determined by means of the 
Excel programme. The equation describing the dis-
placement in the middle of the specimen depending on 
the specimen geometric data and loading force was 
used to calculate the modulus of elasticity EL.

3 RESULTS AND DISCUSSION
3. REZULTATI I RASPRAVA

Table 1 indicates the measured values of the 
modulus of elasticity. The table shows that the speci-
mens have an average modulus of elasticity EL of  
14 487 MPa, with standard deviation of 1 246 MPa.

Table 1 Measured modulus of elasticity in longitudinal 
direction EL
Tablica 1. Izmjereni modul elastičnosti u longitudinalnom 
smjeru EL

Specimen / Uzorak EL , MPa

1 14 975
2 12 442
3 15 701
4 16 694
5 13 543
6 14 874
7 13 789
8 15 293
9 13 875
10 13 684

Average / Prosjek 14 487
St. dev. 1 246

line is a regression curve for the linear part of loading, 
while the inclination of the dashed line is by 5 % small-
er than the continuous one. Since the intersection of a 
straight line with a 5 % smaller inclination and the 
measurements were practically equal to the maximum 
force, the maximum forces measured were used in the 
calculations.

Table 2 indicates the results of the critical stress 
intensity factor calculation for five different methods. 
The results of calculations written in bold differ insig-
nificantly from each other. Calculations using the J in-
tegral (Figure 6) have been shown as the least sensitive 
to the size of elements and to the range of integration. 
The calculation values were around 0.496 MPa·√m, 
regardless of the size of basic elements, the type of ele-
ments surrounding the crack, and the distance of con-
tour around the crack tip, up to the distance of 0.4 mm. 
At this distance, the integration path included two 
types of triangle elements and at least one type of 
8-node brick element. In the case of a shorter distance, 
however, it was demonstrated that a satisfactory result 
requires at least two types of 8-node brick elements, as 
is the case with 1 mm large elements around the crack 
tip. In the case of two rows of triangle elements the ac-
curacy of result is not satisfactory. In this case, at least 
one more row of 8-node brick elements is required.

Figure 5 Force depending on crack mouth opening 
displacement with linear regression curves
Slika 5. Prikaz ovisnosti sile o pomaku otvora pukotine 
linearnom regresijskom krivuljom
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Figure 6 Meshed crack tip with J integral contour superim-
posed
Slika 6.  Preklapanje mreže oko vrha pukotine s konturama 
J integrala

Table 2 Critical stress intensity factor KIC calculation; R – refinement of elements around crack tip – 8 nodes brick elements; 
T – triangle elements around crack tip
Tablica 2. Izračun faktora kritičnog intenziteta naprezanja KIC; R – usklađivanje elemenata oko vrha pukotine – osam 
čvorova elementa; T – element trokuta oko vrha pukotine

 
El. Size
Veličina
elementa 

mm

KIC (MPa√m) calculated from / KIC (MPa√m) izračunan iz

  J integral (Eq. 4) GIC (Eq. 11)
Stand. 
(Eq. 
18)

Ekst. KI 
(Eq. 2)

Node 
displ. 

(Eq.12)
  dist. from crack tip, mm

Udaljenost od vrha pukotine, mm
crack length dif., mm

Razlika duljine pukotine, mm
  0.2 0.4 1.6 6 0.1 0.15 0.25 0.35
R

1
0.497 (2el)* 0.496 (4el) 0.495 0.495 0.290 0.557 0.425 0.490

0.520

0.494 -
T 0.468 (2el) 0.494 (3el) 0.495 0.496 0.495 0.496 0.497 0.499 - 0.492
R

2
0.445 (1el) 0.495 (2el) 0.495 0.495 - 0.294 0.325 0.481 0.494 -

T 0.476 (2el)  0.489(0.8 3el) 0.493 0.496 0.512 0.507 0.508 0.491 - 0.495

* Values in brackets mean number of elements included in calculations. / Vrijednosti u zagradama označavaju broj elemenata 
uključenih u izračun.

Calculations based on difference of elastic defor-
mation energy exhibit greater sensitivity to the size of 
elements as well as to the type of elements around the 
crack tip. The results are better in the case of triangle 
elements surrounding the tip. In the case of smaller ele-
ments, there is no deviation from the calculation using 
J integral and other two methods regardless of the size 
of the crack extension. When the crack is extended by 
0.05 mm or 0.1% of the crack size, the results are no 
longer satisfactory whatever the size of the basic ele-
ments and type of elements surrounding the crack tip. 
In the case of 8-node brick elements where the refine-
ment is made, the results are not satisfactory regardless 
of the size of elements. When elements of 2 mm in size 
were used and the crack was extended by 0.1mm, no 
calculation could be made because the elastic deforma-
tion energy decreased with an increased crack, which is 
contrary to other cases.

The calculation based on the stress intensity fac-
tor extrapolation at various distances of the crack tip to 
the distance of zero yielded equal results regardless of 
the size of the basic elements. The tip was surrounded 
only by elements with 8 nodes, since during the refine-
ment of elements in the crack propagation line the tri-
angle elements turned into 8-node brick elements. 
Stresses in the y direction and stress intensity factors as 
a consequence of the crack tip distance together with 
regression curve are shown in Figure 7. It clearly 
shows the linear dependence of the stress intensity fac-
tor on distance.

Likewise, the calculation based on the deforma-
tion of triangle element (Eq. 12) nodes was equal for 
both sizes of basic elements, while the triangle element 
size was the same in both cases, equalling 0.118 mm. 

The calculation of critical stress intensity factor 
by a generally known equation for an isotropic CT 
specimen (Eq. 18) yielded about 5 % higher results. In 
our case, the reason for that was probably the ortho-
tropic material, which has significantly lower modulus 
of elasticity in radial and in tangential direction com-
pared to the longitudinal one, but in the equation 12 
only the modulus of elasticity in longitudinal direction 
is used. Another reason could also be the specimen 

Figure 7 Stresses in y direction sy and stress intensity factor 
KI with regression line as a consequence of distance from 
the crack tip
Slika 7. Prikaz ovisnosti naprezanja u y smjeru sy i faktora 
intenziteta naprezanja KI o udaljenosti od vrha pukotine 
regresijskim krivuljama
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height-to-length ratio.  This is to say that the equation 
assumes the mentioned ratio to be 1, while in our case 
it was less than 1.

Since the calculation of the critical stress inten-
sity factor by means of the J integral, in which the con-
tour is sufficiently far from the tip, is satisfactory, and 
the calculation method simple, the J integral was used 
to calculate KIC for the remaining specimens.

Table 3 shows the critical stress intensity factors 
calculated by means of the J integral. The integral con-
tour was 6 mm away from the crack tip at the basic ele-
ments size of 2 mm and triangle elements around the 
crack tip. An average value of critical stress intensity 
factor is 0.56  MPa·√m with standard deviation of 
0.047 MPa·√m, which represents less than 10 % of the 
mean value determined. A similar deviation can be 
found with the modulus of elasticity. Considering Vasić 
and Stanzl-Tschegg (2007), who stated the value of 
0.62 MPa·√m for the RL orientation as the beech frac-
ture toughness with a moisture content of 12 %, and the 
fact that fracture toughness in the TL configuration is 
lower than that of the RL configuration, as stated by 
Stanzl-Tschegg and Navi (2009), it can be ascertained 
that the values we obtained comply with their findings 
as well with Majano-Majano et. al. (2012). It should 
also be noted that the bigger specimens would proba-
bly give more representative KIC values, since they are 
dimension dependent as reported by Stanzl-Tschegg et. 
al. (1995).

Table 3 Critical stress intensity factors KIC
Tablica 3. Faktor kritičnog intenziteta naprezanja KIC

Specimen
Uzorak KIC, MPa·√m 

Average
Srednja 

vrijednost

St. dev.
Stand. 

devijacija
1 0.49

0.56 0.047

2 0.63
3 0.53
4 0.62
5 0.57
6 0.58
7 0.52
8 0.57
9 0.53

4 	CONCLUSION
4. 	ZAKLJUČAK

Comparing different methods for mode I critical 
stress intensity factor calculations, the J integral proves 
to be the most appropriate considering the simplicity 
and sensitivity to the size and shape of the elements. It 
was used to calculate the critical stress intensity factor 
for beech wood in a TL configuration, which means 
that the specimens were loaded in a tangential direction 
while the crack propagated in a longitudinal direction. 
The average value was 0.56 MPa·√m with a standard 
deviation of 0.047 MPa·√m. Comparing the results of 
Vasic and Stanzl-Tschegg (2007), who obtained KIC of 

0.62 MPa·√m in the RL configuration at 12 % wood 
moisture content, and the fact that the value in TL con-
figuration is lower than the value in RL configuration, 
we find that the values obtained agree with research 
results of other authors like Majano-Majano et al. 
(2012), who stated the value for KIC in TL configura-
tion in the range from 0.44 to 0.63 MPa√m and Ozyhar 
et. al. (2012), who determined KIC in TL configuration 
to be around 0.406.  Likewise, it was found that re-
searchers predominantly investigate the so-called ‘sta-
ble fracture’, which means that the crack propagates in 
proportion to the crack mouth opening displacement. 
Beech wood in the TL configuration, however, has 
shown to be a distinctly brittle material, since after the 
maximum load is achieved, the crack propagates in-
stantaneously and at a great speed to a certain equilib-
rium length (Merhar and Bučar, 2012), which various 
authors consider to be an unstable fracture. However, 
the RL configuration is exhibited as a more stable one, 
and therefore several authors prefer to use it as a model 
for determining the critical stress intensity factor.
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