
Accepted to IEEE Trans. on Antennas and Propagation on Dec. 20, 2016 

 

Fundamental Efficiency Limits for Small Metallic 

Antennas 

 

Abstract – Both the radiation efficiency and bandwidth of 

electrically small antennas are dramatically reduced as the size 

decreases. Fundamental limitations on the bandwidth of small 

antennas have been thoroughly treated in the past. However, 

upper bounds on radiation efficiency have not been established 

even though it is also of significant importance. Here, radiation 

from a thin metallic shell is rigorously analyzed to establish 

fundamental limits on the radiation efficiency of resonant, 

electrically small antennas in terms of the size and the metal 

conductivity. Metallic losses are systematically introduced into the 

circuit model proposed by Chu, and several resonant antennas 

with maximum radiation efficiencies are analyzed. Resonant 

electric and magnetic dipole antennas both have maximum 

radiation efficiencies near 100% until the size is reduced below a 

critical value, at which point the efficiency scales as electrical size 

to the fourth power �������. It is also shown that a helix antenna 

that resonantly couples the TM10 mode to the TE10 mode has a 

maximum radiation efficiency, and is about twice that of a 

resonant dipole or loop antenna. The closed form expressions 

reported here provide valuable insight into the design of small 

antennas with optimal efficiencies.  

Index Terms – Small antennas, radiation efficiency, spherical 

antennas, Chu limit, Q-factor 

I. INTRODUCTION 

HERE is a continual desire to reduce the size of antennas 

for wireless communication. However, it is well-known 

that the radiation efficiency (��	
) and bandwidth (�) of 

electrically small antennas are dramatically reduced as the size 

decreases. In the 1940’s, Wheeler and Chu established a lower 

bound on the minimum radiation quality factor (��	
) that a 

small antenna can realize [1, 2], which is related to the 

antenna’s bandwidth [3]. This pioneering work prompted 

tremendous research efforts towards developing small antennas 

with bandwidths approaching these fundamental limits [4]. 

Furthermore, a myriad of more accurate lower bounds on the 

quality factors of antennas with different geometries, material 

loadings, radiation patterns, etc. were also established [5].  

 However, the communication data rate, rather than 

bandwidth, is often the most meaningful metric for 

characterizing the overall performance of a wireless link. The 

maximum rate that data can be transmitted is known as the 

channel capacity (
), and is related to the bandwidth and signal-

to-noise ratio ��/�� at the receiver by [6], 


 = � log� �1 + �
��, (1) 

Note that the signal-to-noise ratio of omnidirectional antennas 

is proportional to the radiation efficiency. Communication 

systems commonly realize data rates that closely approach the 

channel capacity [7]. 

 Let us consider some of the implications of (1) on the design 

of electrically small antennas with omnidirectional radiation 

patterns. It is well known that the bandwidth of a small antenna 

can be increased by resistive loading, which reduces the 

radiation efficiency. This tradeoff is particularly useful when 

there is a large signal-to-noise ratio ��/� ≫ 1� at the receiver 

such that the net effect of increasing � and reducing �/� 

enhances the channel capacity, 
. However, there are also 

situations where the signal-to-noise ratio is low (e.g., GPS, 

wireless sensor networks, internet of things, implantable 

antennas) [8-10]. When �/� ≪ 1, the channel capacity can be 

written as, 

lim /!→# 
 = �
ln�2� �#

, (2) 

where �# = �/� is the power spectral density from a white 

noise source. In this extreme scenario, the channel capacity is 

independent of the bandwidth since increasing bandwidth also 

increases noise. From an antenna perspective, the maximum 

data rate of these power limited systems can only be improved 

by increasing the radiation efficiency. Clearly, it is important to 

quantify tradeoffs between size, efficiency, and bandwidth of 

electrically small antennas so that wireless systems with 

optimal performances can be designed. However, the vast 

majority of the small antenna literature has only focused on 

tradeoffs between bandwidth and size.  

 Small antennas can typically be categorized as either an 

electric dipole (TM10) or a magnetic dipole (TE10). Electric 

dipoles have substantially larger radiation resistances than 

magnetic dipoles, but they are also more difficult to match. It is 

an open question as to which antenna has a better radiation 

efficiency when tuned to resonance. To date, the most common 

method of analytically estimating tradeoffs between radiation 

efficiency and size is to consider common antenna types (e.g. 

capacitively loaded loop, inductively loaded dipole), and then 

approximate the current distribution to calculate the radiated 
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and dissipated power [11-13]. However, this approach is not 

general. 

 There have been some attempts to establish fundamental 

efficiency limits. In [14], the efficiency of a small antenna is 

written in terms of the efficiency of the matching network and 

the radiation efficiency of the antenna. However, limited insight 

can be gained by treating the antenna and matching network 

independently since it is usually more efficient to integrate the 

matching network into the antenna itself [15]. An attempt to 

establish bounds on the maximum achievable gain and 

efficiency using a “loss merit factor” is reported in [16]. 

However, the results are clearly unphysical since a single turn 

loop antenna can surpass these fundamental limits when &' ≪
1 [12]. The most general characterization of the radiation 

efficiency was performed by Harrington, who established 

fundamental limits on the gain, bandwidth, and efficiency of 

arbitrarily sized antennas [17]. However, the efficiency and 

bandwidth are written in general terms of spherical Bessel 

functions, and are not simplified for the case of electrically 

small antennas. Furthermore, there is no discussion on how to 

establish a resonance, which is a necessary condition for 

impedance matching. In [17], Harrington derived the familiar 

expression for the maximum achievable gain of a given sized 

antenna �( = �&'�� + 2&'�, and notes that it is only valid 

when the antenna is electrically large (&' > 1). However, the 

formula is commonly misapplied to the case of electrically 

small antennas [18-21].  

 Here, the circuit model introduced by Chu is used to derive 

fundamental limitations on the radiation efficiency of small 

antennas. To begin, the analysis proposed by Harrington is 

examined in detail for the case of electrically small antennas. 

Then, more accurate bounds are established that account for 

energy stored within the antenna, while also enforcing a 

resonance. It is postulated that a thin metallic shell represents a 

physical structure with maximal radiation efficiency. Then, 

radiation from the shell is rigorously analyzed, which is 

possible due to its spherical symmetry. It is shown that the 

maximum radiation efficiency of a small antenna is a function 

of the electrical size (&'), operating frequency, and metal 

conductivity. This work provides a rigorous standard that can 

be used to characterize the relative performance of different 

small antenna designs. Furthermore, the insight provided here 

can aid in designing antennas with optimal radiation efficiency 

for a given size. 

II. DEFINITIONS AND ASSUMPTIONS 

 To begin, it is useful to outline some definitions and the 

assumptions that are made. The quality factor is the ratio of the 

energy stored (*) to the power dissipated �+�. Since power can 

be dissipated through either radiation �+�	
� or material losses 

�+,-..�, it is useful to define two different quality factors. The 

radiation quality factor is defined as, 

��	
 = 2/*
+�	


, (3) 

which neglects material losses. Lower bounds on the radiation 

quality factor have been thoroughly treated in the past. The total 

quality factor,  

�0-0 = 2/*
+0-0

= 2/*
+�	
 + +,-..

= ��	
��	
 , (4) 

accounts for both radiation and material losses, where ��	
 is 

the radiation efficiency. In both cases, * represents the larger 

of the electric �*1� or magnetic �*2� stored energy, and / is 

the angular frequency.  

 It is often more convenient to discuss the dissipation factor, 

3, rather than the radiation efficiency [17]. The dissipation 

factor is defined as the ratio of the power lost to material 

absorption to the power radiated, 

3 = +,-..
+�	


, (5) 

and is related to the radiation efficiency by, 

��	
 = +�	

+�	
 + +,-..

= 1
1 + 3. (6) 

Since there exists a one-to-one relationship between the 

dissipation factor and the radiation efficiency, the two terms are 

used interchangeably. 

 The limitations on radiation efficiency derived here are valid 

for metallic antennas with metal thicknesses that are much 

larger than the skin depth. In general, the efficiency of the 

antenna increases if it is filled with a magnetic material with 

high permeability and sufficiently low loss. If such a material 

exists, the geometries discussed here are not necessarily 

optimal. In addition, it is possible for dielectric loaded antennas 

to achieve resonance using materials with a high permittivity 

(> 50) and low loss. These antennas may have efficiencies that 

surpass the fundamental limits derived here. However, since the 

majority of small antennas operating above 1 MHz do not 

utilize either magnetic or dielectric loading, it is likely that any 

potential benefit to the radiation efficiency is offset by 

increased material losses. A more thorough analysis on the 

limitations of magneto-dielectric loaded antennas is left for 

future work. 

III. RADIATION FROM A SOLID METALLIC SPHERE 

 In [17], Harrington considered radiation from a solid metallic 

sphere to analytically compute antenna gain limitations. In this 

section, we review the analysis performed by Harrington using 

the circuit models introduced by Chu [1] and Thal [22]. In 

addition, the efficiency bounds are simplified by taking the 

limit that the size is electrically small.  

 The circuit model shown in Fig. 1 was proposed in [22] to 

exactly model the modes supported by a spherical geometry 

with radius ', where 7 is the velocity of light in free space. The 

circuit model can be derived using the recurrence relations of 

spherical Bessel functions. All impedances are normalized to 

the wave impedance of free-space, 8# = 9:#/;#. At each 

terminal, the impedance looking to the left represents the wave 

impedance of outward propagating spherical modes, whereas 

the impedance looking to the right represents the wave 

impedance of inward propagating modes. The total energy 

stored in the electric and magnetic fields can be calculated by 



summing the energy stored in all capacitors �*1 = ∑ 
=�/4� 

and inductors �*2 = ∑ ?@�/4�, respectively. The circuit is 

valid for all indices A. The TM1m modes have radiation patterns 

identical to short electric dipoles, whereas the TE1m modes have 

radiation patterns identical to small loops (i.e. magnetic 

dipoles). For simplicity, it will be assumed that A = 0. It is 

important to note that all TM and TE spherical modes are 

orthogonal, which allows each mode to be treated 

independently of the others. 

 

 
Fig. 1: Exact circuit model introduced by Thal that models spherical modes 

external and internal to a sphere of radius '. All impedances are normalized to 

the wave impedance of free space, 8#. 

 

 

 Consider a sphere with radius ' that is filled with a highly 

conductive metal with normalized impedance much less than its 

electrical size �8B/8# ≪ &'�, where & = //7 is the 

wavenumber of free space. The normalized impedance of the 

conductor can be related to the conductivity �C� and skin depth 

�D.� by,  

8B
8#

≈ �1 + F�G/;#
2C = &D.

2 . (7) 

If the conductivity is large, the reactive component of 8B/8# can 

be neglected since it will be dominated by the other reactive 

elements in the circuit. This hypothetical antenna is excited 

with magnetic current sources directly above the surface that 

excite the lowest order modes (TM10 and TE10) since these 

radiate the most efficiently. These represent the most ideal 

conditions for maximizing the efficiency since any structuring 

of the metal will only increase the dissipation factor �3 =
+,-../+�	
�.  

 The sphere excited with impressed magnetic current sources 

can be modelled using the circuits shown in Fig. 2 (a) and (b) 

for the TM10 and TE10 modes, respectively. Note that the circuit 

model is an alternative form of the circuit shown in Fig. 1, and 

is terminated with a transmission line of length '. It is 

sometimes more convenient to use this circuit model, which can 

be derived by noting that the impedance or admittance looking 

inwards from the free space resistance is equal to F tan�&'� for 

the two cases, respectively [22].  

 

 
Fig. 2: Alternate form of the circuit shown in Fig. 1 for the case of a metallic 

sphere that is excited with magnetic current sources directly above its surface. 
(a) The TM10 mode is excited. (b) The TE10 mode is excited. The electric surface 

currents induced on the surface of the metal are shown to the right for the two 

cases. 

 

 

 If the metal has a high conductivity, the negative inductor 

and negative capacitor to the right of the voltage source become 

open and short circuits, respectively. Therefore, the circuit can 

be simplified as shown in Fig. 3 for the case of electrically small 

antennas �&' < 0.5�. Fundamental limits on the radiation 

efficiency of small electric and magnetic dipole antennas can be 

calculated from these circuit models. The dissipation factors for 

the TM10 and TE10 modes are, 

3K
1	,LMN# = �8B/8#�
�&'�� + O��&'�#�, 

3K
1	,LPN# = �8B/8#�
�&'�Q + O � 1

�&'���, 
(8) 

where O��&'�R� designates terms that have an order of 

magnitude �&'�R. These dissipation factors qualitatively agree 

with previous analyses that considered the radiation efficiency 

of short dipoles and small loops [11]. Electric dipoles have a 

much larger input resistance and therefore a larger efficiency 

for a given sized antenna. However, this analysis neglects 

impedance matching since a solid conducting sphere cannot 

resonate, which is a necessary condition for impedance 

matching high � antennas. Furthermore, this analysis also 

neglects energy stored within the antenna. 

 

 
Fig. 3: Simplified circuits that model radiation from a highly conductive, 
electrically small sphere. (a) TM10 radiation. (b) TE10 radiation. 
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IV. RADIATION FROM A METALLIC SHELL 

 It is postulated that radiation from a thin metallic shell 

provides an upper limit on the radiation efficiency of resonant 

antennas. Consider a metallic shell with radius ' and thickness 

S, as shown in Fig. 4. All realistic antennas pattern the metal to 

establish a resonance, which only increases metallic losses. The 

metallic shell is filled with a material with relative permittivity 

;. and relative permeability :., which are assumed to be 

lossless for simplicity. Placing any metal within the sphere will 

only reduce the radiation efficiency since it will increase the 

energy stored within the antenna (and therefore dissipation) 

without adding radiated power.  

 

 
Fig. 4: A metallic shell with thickness S is filled with a material with relative 

permittivity ;. and relative permeability :.. (a) and (b) Induced surface currents 
generating TM10 radiation and TE11 radiation, respectively. 

 

 

 The circuits that exactly model TM10 and TE10 radiation are 

shown in Fig. 5 [22]. Again, the metallic shell is assumed to 

have a high conductivity �8B/8# ≪ &'�, which allows it to be 

replaced with a transmission line of length S and normalized 

impedance 8B/8#. 

 

 
Fig. 5: (a) and (b) Exact circuits corresponding to a metallic shell that radiates 

the TM10 and TE10 modes, respectively. 

 

 

 The shell thickness is assumed to be much greater than the 

skin depth of the metal, but much less than the radius �D. ≪
S ≪ '�. Therefore, the shell can be replaced with two resistors 

8B/8# that isolate the external field from the internal field, as 

shown in Fig. 6. In addition, the antenna is assumed to be 

electrically small such that the impedance looking into the 

origin is represented as a series or parallel LC circuit for the TM 

or TE cases, respectively. The antenna is symmetrically fed 

with magnetic current sources on either side of the metallic 

shell, which excite the lowest order TM or TE modes for 

optimal radiation efficiency. This excitation ensures the voltage 

on the exterior surface of the antenna �=T� is identical to the 

voltage on the interior surface �=U�, at every position 

�=T�V, W� = =U�V, W��. In other words, the exterior surface of 

the metallic shell is effectively shorted to the interior surface of 

the shell, which is the case for all realistic antennas utilizing 

metal patterned on a spherical surface. 

 

 
Fig. 6: (a) and (b) Approximate circuits modelling TM10 and TE10 radiation 

from a metallic shell for the case where 8B/8# ≪ &S ≪ &' ≪ 1, respectively. 
For both cases, the voltage sources symmetrically excite the inside and outside 

of the metallic shell such that the exterior surface of the shell is effectively 

shorted to the interior surface.  

 

   

 From symmetry, the circuits shown in Fig. 6 can be further 

simplified to the circuits shown in Fig. 7. The dissipation 

factors for the TM10 and TE10 modes can be calculated using the 

derived circuit, 

3.X1,,LMN# = �1 + �;./2����8B/8#�
�&'�� + O��&'�#�, 

3.X1,,LPN# = �1 + �2/:. ����8B/8#�
�&'�Q + O��&'�#�. 

(9) 

If the antenna is loaded with a perfect magnetic conductor 

�:. → ∞, ;. → 0�, the dissipation factors reduce to the case 

analyzed by Harrington. In this case, no energy is stored within 

the antenna since the internal inductor and capacitor are open 

circuited. Eq. (9) clearly shows that the radiation efficiency is 

reduced as the permeability is decreased and the permittivity is 

increased.  
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Fig. 7: Simplified version of the circuit shown in Fig. 6. 

 

 It should be noted that the circuits shown in Fig. 7 could have 

been directly written using a different argument that does not 

require considering the intermediate steps of Fig. 5 and Fig. 6. 

A small spherical antenna can be replaced with impressed 

electric current sources over a spherical surface. This scenario 

is modelled by replacing the shunt voltage source in Fig. 7 with 

a shunt current source, as shown in [23]. Then, the metallic loss 

is found by integrating the quantity |[0|�8B over the surface of 

the antenna, where [0  represents the tangential magnetic field 

(i.e., the surface current). In this circuit model, the magnetic 

field next to the surface of impressed current sources is 

represented as current flowing through the two resistors with 

impedance 8B/8#. Therefore, these two resistors are required to 

account for dissipation on the two metal surfaces, which exist 

on the external and internal sides of the sphere. 

 There are several reasons why the approach using impressed 

magnetic current sources is emphasized here. This work is 

closely related to the analysis used by Harrington [17]. 

Therefore, it is natural to use the same method that Harrington 

employed. In addition, the approach seemed to be more 

physical since a geometry (spherical metallic shell) is first 

considered, and then sources are added to generate radiation. 

This systematic methodology makes it clear which assumptions 

are made �8B/8# ≪ &' and D. ≪ S ≪ '�. The reason why two 

8B/8# resistors are required to model metallic losses rather than 

one resistor in series with the generator is subtle. The magnitude 

of the surface currents flowing on the internal and external 

surfaces of the metallic shell are in general different, and 

therefore requires two separate resistors. This outcome is a 

natural result when impressed magnetic currents over a 

spherical shell are considered, and is less obvious if impressed 

electric current sources are used. 

 

A. Quality Factor Limitations for Capacitors 

 These circuit models can also be used to derive upper bounds 

on the performance of inductors and capacitors. In the limit 

&' → 0, the circuit shown in Fig. 7(a) simplifies to a lossy 

capacitor (series RC circuit), with quality factor, 

�0-0\ = 2�2 + ;.�
4�&'�] + �;.� + 4��&'��8B/8#� + O � 1

&'�. (10) 

The term proportional to �&'�] corresponds to radiative loss 

and the term proportional to �8B/8#� corresponds to ohmic loss. 

As the size of the capacitor decreases, the � increases. 

Furthermore, the Q increases as the excited mode order (^) 

increases. Therefore, there is no fundamental limit on the 

quality factor of a capacitor constructed from metal. In practice, 

capacitors can have extremely large Q factors (exceeding 

1000), which are generally limited due to dielectric breakdown 

or manufacturing capabilities of accurately fabricating small 

gaps.  

B. Quality Factor Limitations for Inductors 

 Conversely, metallic losses provide an upper bound on the 

achievable quality factor of an inductor. In the limit &' → 0, 

the circuit shown in Fig. 7(b) simplifies to a lossy inductor 

(series RL circuit). The � of this circuit is, 

�0-0_ = :.�2 + :.��&'�
:.��&'�Q + �4 + :.���8B/8#� + O � 1

&'�. (11) 

The term proportional to �&'�Q corresponds to radiative loss, 

whereas the term proportional to �8B/8#� corresponds to 

metallic loss. If higher order modes are excited, the metallic loss 

remains the same, but the inductance is decreased. Therefore, 

exciting the TE10 mode provides an optimal Q for inductors 

provided that �&'�Q ≪ 1 such that the radiative loss is not 

significant. In other words, an arbitrary inductor within a sphere 

of radius ' will always have a quality factor lower than (11). It 

should be noted that the inductor Q in (11) is expressed in terms 

of the magnetic permeability :. for completeness. However, if 

a material with high permeability and sufficiently low loss is 

available, the metallic shell shown in Fig. 4 is not the optimal 

configuration for maximizing the inductor Q. One example that 

is more efficient is a metallic shell with radius '/2 embedded 

within a magnetic material with radius '. Nevertheless, it seems 

that existing materials typically have loss tangents that are 

prohibitively large above 1 MHz since commercially available 

inductors with the highest quality factors use air cores [24]. 

V. RESONANT SMALL ANTENNAS 

 In order to impedance match a small antenna to a resistive 

load, it must resonate to cancel the input reactance. The three 

most efficient resonant antennas will be considered: 

capacitively loaded TE10 antenna, coupled TM10:TE10 antenna, 

and coupled TM10:TE20 antenna. 

A. Capacitively loaded TE10 Antenna (Magnetic Dipole) 

 A loop antenna radiates the TE10 mode. The antenna will 

resonate if a capacitor is placed in series with the feed. As 

demonstrated in the previous section, it is reasonable to assume 

that the capacitor has an infinitely large �0-0 when deriving an 

upper bound on the radiation efficiency. Adding an ideal 

capacitor in series with the voltage source in Fig. 7(b) does not 

affect the radiation efficiency. Therefore, 3�1.LPN# of a resonant 

loop antenna is equal to 3.X1,,LPN#. If ;. = 1 and :. = 1, the 

dissipation factor simplifies, 

3�1.LPN# = 5
�&'�Q �8B

8#
� + 11

5�&'�� �8B
8#

� + O��&'�#�. (12) 
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 It should be noted that the radiation efficiency of a loop 

antenna is often written in terms of the number of turns �, 

which does not appear in (12). A multi-turn loop antenna has an 

inductance and radiation resistance that increases as ��. 

However, the loss resistance only increases as �, which 

suggests that increasing the number of turns increases the 

radiation efficiency [25]. However, this argument assumes that 

the wire diameter is independent of �. In principle, a single-

turn antenna could have a wire diameter that is � times larger 

than a multi-turn antenna with the same overall dimensions, 

which reduces the loss resistance. Therefore, single-turn 

antennas and multi-turn antennas theoretically have similar 

radiation efficiencies, which agrees with (12). In practice, 

multi-turn loop antennas provide a significantly larger input 

impedance which makes them easier to match to 50 Ω loads. Of 

course, these arguments are overly simplistic since they assume 

the current is uniformly distributed around the wire. In reality, 

eddy currents cause the current to bunch around the wire’s 

surface, which increases the loss resistance of both multi-turn 

and single-turn loops [26]. This makes it difficult to accurately 

estimate the radiation efficiency of wire antennas using 

conventional methods [11-13].  

B. Coupled TM10:TE10 Antenna (Self-Resonant Helix) 

 Electric dipole antennas (TM10) require an inductor to 

generate a resonance. However, since ideal inductors do not 

exist, it is not physically meaningful to discuss the dissipation 

factor of a resonant electric dipole on its own. Instead, the TM10 

mode should be coupled to either the TE10 or TE20 modes to 

establish a resonance with maximal radiation efficiency [23]. 

First, let us consider coupling between the TM10 mode and the 

TE10 mode using an ideal transformer, as shown in Fig. 8. 

Physically, the circuit corresponds to directly exciting the TE10 

and TM10 modes with magnetic currents directly above the 

surfaces of the metallic shell with a ratio of 1: � to ensure 

resonance �*1 = *2�. In practice, it is also possible to directly 

excite both the TE10 and TM10 modes using a properly designed 

antenna. For instance, the self-resonant spherical helix antenna 

proposed by Wheeler efficiently couples the two modes using a 

helical wire with varying pitch [13]. If ;. = 1 and :. = 1, the 

number of turns � that are required to establish a resonance 

simplifies,  

� = √2
�&'� − 11√2�&'�

20 + O��&'�]�, (13) 

as demonstrated by Thal [23]. At resonance the dissipation 

factor of this coupled system is  

3�1.LMN#:LPN# = 5
3�&'�Q �8B

8#
� + 17

30�&'�� �8B
8#

� + O��&'�#�. 
(14) 

 The dissipation factor is 3 times lower than the dissipation 

factor of the magnetic dipole on its own. Eq. (14) represents a 

lower bound on the dissipation factor of an electrically small 

antenna without material loading. The ratio of the power 

radiated in the TM10 mode to the power radiated in the TE10 

mode is, 

+�	
LMN#
+�	
LPN# = 2 + 9�&'��

5 + 4 �8B
8#

� �&'�� + O��&'�Q� (15) 

Therefore, the radiation pattern is in general elliptically 

polarized [27]. 

 

 
Fig. 8: The TM10 mode is coupled to the TE10 mode using an ideal transformer 
to establish a resonance. This circuit models the upper bound on the radiation 

efficiency of electrically small antennas without material loading. 

C. Coupled TM10:TE20 Antenna (Electric Dipole) 

 If it is desired to have a radiation pattern nearly identical to 

that of a short electric dipole, the TM10 mode can be coupled to 

the TE20 mode, which radiates poorly [23] (see Fig. 9). 

Physically, this is similar to the case of a spherical helix antenna 

mounted on top of a ground plane [28]. However, not only does 

the TE20 mode have a lower radiation resistance g2+�	
/
h@i11
h�j, it also has a lower inductance (i.e. lower �0-0_ ), which 

increases the dissipation factor further. If ;. = 1 and :. = 1, 

the number of turns � that are required to establish a resonance 

simplifies,  

� = 910/3
�&'� − 167√30�&'�

1260 + O��&'�]�. (16) 

At resonance, the dissipation factor of this coupled system is  

3�1.LMN#:LP�# = 39
10�&'�Q �8B

8#
� − 47

140�&'�� �8B
8#

� + O��&'�#�, 
 (17) 

and the ratio of the power radiated in the TM10 mode to the 

power radiated in the TE20 mode is 

+�	
LMN#
+�	
LP�# = 30

�&'�� + 113
7 + O��&'���. (18) 

Therefore, the radiation pattern is predominantly that of an 

electric dipole when the antenna is electrically small.  

 

 
Fig. 9: The TM10 mode is coupled to the TE20 mode using an ideal transformer 
to establish a resonance. This system has a radiation pattern virtually identical 

to that of a short electric dipole since the TE20 does not radiate efficiently. 

 

 

 The dissipation factor of this dipole antenna is ~2.3 times 

larger than the case where there is TM10:TE10 coupling (i.e. the 

self-resonant helix antenna). Even though electric dipole 

antennas require lossy inductors to be impedance matched, they 
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have a substantially larger radiation resistance than loop 

antennas. These two competing factors end up cancelling each 

other, such that that the overall radiation efficiency of dipole 

and loop antennas are quite similar �3�1.LMN#:LP�#/3�1.LPN# ≈
0.78�. This agrees with conventional wisdom since both 

electric and magnetic dipoles are commonly utilized.  

 Table 1 summarizes the main results of this section. The 

leading order terms of the quality and dissipation factors for 

each antenna are reported for the case where ;. = 1 and :. =
1. All expressions are simplified by noting that &D./2 = 8B/8#. 

In addition, metallic geometries with similar radiation 

properties are shown in the left column. It should be 

emphasized that these metallic geometries do not correspond to 

optimized antennas, and are only provided to give some 

physical intuition. The TM10 antenna supports Vm-directed 

currents along its surface, but must be matched with an ideal 

inductor, which is unphysical. The TE10 and TE20 antennas are 

each fed with a capacitively loaded vertical wire through the 

center, so that current can continually flow around a loop. The 

TM10:TE10 and TM10:TE20 coupled antennas are self-resonant, 

and do not require lumped element loading. 

 
Table 1: Quality and dissipation factors for the different antenna types when 

;. = 1 and :. = 1. The dissipation factor of the TM10:TE10 coupled antenna 
establishes a fundamental limit for small antennas without material loading. All 

expressions are simplified by noting that &D./2 = 8B/8#. 
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VI. DISCUSSION 

 The radiation efficiency of a small antenna depends upon the 

surface resistivity of the metal �8B/8#�, which is a function of 

the operating frequency and conductivity. Upper bounds on the 

radiation efficiency of the three most efficient antenna types 

constructed from copper �C = 5.96 × 10p S/m� that operate at 

300 MHz are shown in Fig. 10. The radiation efficiency rapidly 

deteriorates when the antenna is smaller than the critical size,  

&'B�K0KB	,~�&D.�N/Q = �2/;#
C �

N/s
, (19) 

which equals 0.07 for copper at 300 MHz. The dissipation 

factor is near unity at this size. It should be noted that this 

critical size varies slowly with changes to the operating 

frequency and conductivity (to the 1/8 power). For example, 

when the operating frequency is increased by a factor of 100 

(30 GHz), the critical size of an antenna constructed from 

copper is &'B�K0KB	, = 0.12. 

 The dissipation factor of a small antenna is approximately 

equal to the minimum radiation quality factor multiplied by the 

normalized skin depth, 

3 ≈ ��	
2KR �D.
' �. (20) 

The minimum quality factors for the three different antennas 

are ��	
2KR = 3/�&'�] for magnetic dipoles, ��	
2KR = 1/�&'�] 

for self-resonant helix antennas, and ��	
2KR = 1.5/�&'�] for 

electric dipoles [23]. The half-power bandwidth of a small 

antenna can also be written in terms of the radiation quality 

factor and normalized skin depth, 

�*]
t ≈ 2
��	
2KR + 2D.

' . (21) 

When ' > 'B�K0KB	, , the radiation efficiency is near 100%, and 

the fractional bandwidth is proportional to ']. However, when 

' < 'B�K0KB	,  the fractional bandwidth is proportional to 1/'. In 

other words, reducing the antenna size actually increases 

bandwidth when the efficiency is low. This is a due to the fact 

that the dissipation factor varies more rapidly with electrical 

size than the radiation quality factor. 

 The fundamental limits reported here are compared to 

existing antennas in the literature. The squares and triangles in 

Fig. 10 correspond to previously published antenna designs, 

which are spherical and non-spherical, respectively [27, 29-39]. 

There was an attempt to find antennas with the highest 

efficiencies, but the list is not comprehensive. The data in Fig. 

10 corresponds to both measurement and simulation results. 

However, simulations are only reported whenever 

measurements are unavailable. The majority of published 

antennas have electrical sizes &' > 0.3, which are not included. 

Simulation and measurement errors make it difficult to 

accurately compare these antennas to the fundamental limit 

since both are near 100%. To provide a fair comparison 

between the different antenna designs, the dissipation factors of 

the published antennas are scaled to account for their different 

skin depths. Specifically, the dissipation factor is scaled by 

�9C/u�9�300MHz�/�5.96 × 10p S/m�, where C and u are the 

conductivity and operating frequency of the published 

antennas. The non-spherical antennas are approximated as 

spheres with identical volume to provide a fair comparison. In 

other words, the effective radius of a nonspherical antenna is 

assumed to be ' = �3=/�4v��N/], where = is the antenna 

volume.  

 There is a great deal of spread in the published data since 

previous antenna designs were not compared to a well-defined 



efficiency limit. In contrast, lower bounds on the radiation 

quality factor were established over a half-century ago, and 

small antennas regularly approach these limits. In general, the 

antennas with highest efficiencies maximize the electric 

currents supported along their outer surface, which is also 

consistent with minimizing the radiation quality factor. In 

addition, all antennas need some inductive loading to achieve 

resonance. The efficiency is maximized when the loading 

inductor maximizes its size within the antenna, which 

maximizes the inductor quality factor. For example, antennas 

that primarily radiate the electric dipole mode should wind a 

wire around the surface a number of times to generate a large 

inductance that resonates with the small input capacitance of 

the TM10 mode. Larger wire diameters increase the area that 

current can flow over, which reduces metallic losses. However, 

increasing the diameter also reduces spacing between 

conductors, which in turn increases loss due to the proximity 

effect [26]. Therefore, an optimal wire diameter should be 

utilized to minimize the peak current density. Electrically small 

magnetic dipoles are typically realized with capacitively 

loaded, single or multi-turn loops. Commercially available, 

surface mount capacitors commonly realize low loss and high 

capacitances within small form factors. Therefore, it is 

relatively straightforward to design magnetic dipole antennas 

with extremely small electrical sizes. Again, the diameter of the 

wire should be optimized to spread the current out as much as 

possible over the surface of the antenna, which in turn 

maximizes the radiation efficiency.  

 

 

 

 
Fig. 10: Radiation efficiency as a function of antenna size. It is assumed the 

antenna is constructed from copper �C = 5.96 × 10p S/m� and operates at 300 

MHz �8B/8# = 1.18 × 10Un�. Upper bounds on the electric, magnetic, and 
helix antennas are shown in blue, red, and green, curves, respectively. Squares 

and triangles correspond to different antennas in the literature, which are 

spherical and non-spherical, respectively. Published antennas that have 
efficiencies approaching the fundamental limit are noted. It is assumed that 

published antennas that are not spherical have an effective radius (&') equal to 
that of a sphere with identical overall volume. The dissipation factor of the 

published antennas is scaled to account for different surface resistivity values. 
Specifically, the dissipation factor is scaled by 

�9C/u�9�300MHz�/�5.96 × 10p S/m�, where C and u are the conductivity 

and operating frequency of the published antennas. 

 

 

VII. SUMMARY 

 Fundamental limitations on the radiation efficiency of 

electrically small antennas are derived by considering radiation 

from a thin metallic shell. It is shown that resonant electric 

�3�1.LMN#:LP�# ≈ 3.98B/�8#�&'�Q�� and magnetic �3�1.LPN# ≈
58B/�8#�&'�Q�� dipoles have similar dissipation factors that 

are over twice that of a self-resonant helix antenna 

�3�1.LMN#:LPN# ≈ 1.678B/�8#�&'�Q��. All three cases require a 

magnetic dipole moment to either radiate or establish 

resonance. It is the magnetic dipole moment that fundamentally 

limits the maximum achievable efficiency.  

 In the future, more accurate bounds on the radiation 

efficiency can be derived for arbitrarily shaped antennas [40-

43]. Furthermore, limitations on the radiation efficiency of 

magneto-dielectric loaded antennas can also be derived using a 

similar analysis, and the results should be compared to the 

limits of metallic antennas. In addition, the results reported here 

can be generalized to develop more accurate bounds on the 

maximum gain of electrically large, superdirective antennas 

[17]. It was mentioned that it is necessary to create a resonance 

to impedance match an electrically small antenna, but there was 

no discussion on how to match the antenna to a particular load. 

In the future, the maximum Q factors of inductors and 

capacitors reported here, could be integrated into the matching 

circuit analysis reported in [14] to examine the effects of 

controlling the input impedance. In addition, the upper bounds 

on inductor Q could be utilized to develop efficiency limits on 

wireless power transfer systems [44]. In summary, the simple 

relationships between antenna size, radiation efficiency, and 

metal conductivity derived here provide a clear path towards 

optimizing future antenna designs. The success in developing 

antennas with near-optimal radiation quality factors inspires 

confidence that small antennas can be designed that more 

closely approach these fundamental efficiency limits.  
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