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Abstract: The main goal of this work is to provide quantum parametrized Hermite-Hadamard
like type integral inequalities for functions whose second quantum derivatives in absolute values
follow different type of convexities. A new quantum integral identity is derived for twice quantum
differentiable functions, which is used as a key element in our demonstrations along with several
basic inequalities such as: power mean inequality, and Holder’s inequality. The symmetry of the
Hermite-Hadamard type inequalities is stressed by the different types of convexities. Several special
cases of the parameter are chosen to illustrate the investigated results. Four examples are presented.
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1. Introduction

The concept of convexity plays a significant role in the theory of inequalities. Inequal-
ities have increasing importance in modern mathematical analysis, and in many other
mathematical disciplines. Moreover, it seems to have “a pivotal role in several pure and
applied sciences” [1]. Integral inequalities, on the other hand, “plays a vital role in the
theory of differential equations” [2]. The very famous Hermite-Hadamard inequality is a
part of integral inequalities and have been intensively studied by numerous scholars in the
last decades. Different approaches have been followed in order to obtain new improve-
ments, generalizations and refinements of this inequality [3–9] and of classical inequalities
like Ostrowski, Simpson, Gruss, Chebysev, Mercer, Jensen, Hardy, Opial, Bullen, Newton,
Bernoulli, Popoviciu and so on. Hermite-Hadamard’s inequality(H-H inequality) and its
different variants have been established for newly studied concepts as Riemann-Liouville
fractional integrals [10], (k, s)-fractional integrals, fuzzy environment, quantum calculus,
(p, q)-calculus and for different types of convexities. For example, a new type of convex-
ity is the n-polynomial convexity investigated by Toplu in [11] where new refinements
of Hermite-Hadamard were given. A possible reason for the great interest given to the
study of the famous Hermite-Hadamard inequality may be the symmetry from within.
The utilisation of the properties of modulus in the proof of all Hermite-Hadamard type
inequalities involves a symmetry between the two expression obtained, the left member
and the right member.

From a historical point of view, one can say that quantum calculus, as a branch of
mathematics, was founded by Euler which used “the parameter q in Newton’s work on
infinite series” [12]. However, Jackson [13], started to develop the theory of quantum
calculus when defined the notions of “general q-integral and q-difference operator” [12].
The q-fractional derivative was introduced firstly by Agarwal [14] and Al-Salam [10] defined
the quantum analogue of the q-fractional integral and “q-Riemann-Liouville fractional
integral” [12]. “The q-calculus concepts on finite intervals” [15,16] were utilized to obtain
q-analogues of classical mathematical objects. “New quantum analogues of the Ostrowski
inequalities” [17] have been described by Noor et al. and some estimated “bounds for the
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left-hand-side(LHS) of quantum H-H inequalities” [18] were presented for convex and
quasi-convex functions. For preinvex functions new q-analogues of the classical Simpson’s
inequality have been given [19]. The notion of right q-derivative, “bDq” and integral were
introduced by Bermudo et al. [20]. The q-H-H inequality was also proven using the Green
function [21,22], by Khan et al., and for recent research, see for example, [23–28]. Recently,
new quantum Simpson’s, quantum Newton’s [29–32] and quantum Ostrowski’s type
inequalities [33] were developed for convex and coordinated convex functions. This theory
knows a rapid development over the past few decades and have numerous applications in
many areas of science such as quantum mechanics, approximation theory, statistics, and
also in information theory, optimization, geometry function theory(GTF), as well as in
cosmology and particle physics [34,35]. Quantum calculus was extended to (p, q)-calculus
and recently to generalized quantum calculus [36].

Motivated by [37], our goal in this study is to present new parametrized q-Hermite-
Hadamard like type inequalities for twice q-differentiable mappings by utilising an auxiliary
q-integral identity. This identity is similar with the corresponding lemma from [37], con-
cerning the q-left and right derivatives of order two. These inequalities are similar to those
obtained in another study [37].

We need to recall the Lemma 2 from [37] which is the main tool in demonstrations
from [37] and important in our study.

Lemma 1. Alp et all [37] consider Ψ : [a, b] → R be a q-differentiable function. If aDqΨ and
bDqΨ are continuous and q-integrable over [a, b], then the following new equality holds:

λ(b− a)
2

∫ 1

0
qt[bDqΨ((1− λt)b + λta)− aDqΨ((1− λt)a + λtb)]dqt

=
1

2λ(b− a)

(∫ λb+(1−λ)a

a
Ψ(t)adqt +

∫ b

λa+(1−λ)b
Ψ(t) bdqt

)
−Ψ(λb + (1− λ)a) + Ψ(λa + (1− λ)b)

2
.

The case when the q-left and right derivatives of order three of the functions satisfies
similar conditions was studied in [38] for convex functions. In all these inequalities we can
see that in the expression from left member, the two integrals which appear are defined
on different intervals, different from the corresponding intervals from inequalities [39]
and [40] because of the parameter λ.

This approach could give interesting indications about how the variation of a quantity
of the analyzed size varies(such as: utility, welfare economics, taxes, health or income
inequalities) [41–43]. For the parameter, we choose λ = 1 and λ = 1

2 in our examples,
which validating the theoretical results.

The paper has been structured in four sections. In Section 2, it will be briefly resume
the basic notions and definitions of q-calculus. The classical H-H integral inequality is
presented. Section 3 is dedicated to formulations and demonstrations of the main results:
Lemma 2, Theorem 4, Theorems 5–9. These theorems present new q-midpoints, trapezoidal
and q-H-H-like type integral inequalities for mappings whose the second q-left and q-right
derivatives in absolute value satisfies different type of convexities (i.e., convex, strongly
convex, n-polynomial convex and strongly quasi-convex functions respectively). Many
consequences have been established for some special choices of the parameter and the
corresponding examples were discussed in detail. For the parameter we choose the values
λ = 1 and λ = 1

2 in inequality from Theorem 5. We used for figures and several calculus
the Matlab R2023a software. Section 4 is dedicated to discussion and conclusions.
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2. Outcomes

Here, we recall some different types of convexities which will be used below in this
paper. The classical convexity, say that a function Ψ : I ⊂ R→ R is convex if

Ψ(tx1 + (1− t)x2) ≤ tΨ(x1) + (1− t)Ψ(x2),

for all (x1, x2) ∈ I2 and t ∈ [0, 1].

Definition 1. Khan et all [44] said that a function Ψ : I ⊂ R→ R is called strongly convex with
modulus c > 0 if

Ψ(τm + (1− τ)M) ≤ τΨ(m) + (1− τ)Ψ(M)− cτ(1− τ)(m−M)2,

holds for all (m, M) ∈ I2 and τ ∈ [0, 1].

Definition 2. Chu et all [45] consider n ∈ N and a nonnegative function Ψ : I ⊂ R→ R. This
function is said then to be an n-polynomial convex function if for every (x, y) ∈ I2 and t ∈ [0, 1],
we have

Ψ(tx + (1− t)y) ≤ 1
n

n

∑
s=1

[1− (1− t)s]Ψ(x) +
1
n

n

∑
s=1

[1− ts]Ψ(y).

Definition 3. Kalsoom et all [46] and Ion [47] said that a function Ψ : I → R with the modulus c
is strongly quasi-convex function, if

Ψ(τx1 + (1− τ)x2) ≤ max{Ψ(x1), Ψ(x2)} − τ(1− τ)c(x1 − x2)
2

for all (x1, x2) ∈ I2, x1 < x2 and τ ∈ [0, 1].

The well-known Hermite-Hadamard’s inequality can be stated as “if Ψ : [a, b]→ R is
a convex function, then the following inequality holds:

Ψ
(

a + b
2

)
≤ 1

b− a

∫ b

a
Ψ(x)dx ≤ Ψ(a) + Ψ(b)

2
, (1)

and when Ψ is a concave function, then previous inequality holds but in the opposite
direction” [48]. This inequality is known also as trapezium inequality.

Let suppose that [a, b] is a real interval with a < b. In this paper, it will be assumed
that 0 < q < 1. It is well-known that the q-number is defined for any number n, [n]q =
1−qn

1−q = 1 + q + ... + qn−2 + qn−1, n ∈ N.
Further, several basic definitions, remarks and lemmas of the q-calculus will be pre-

sented because they will be used throughout this paper.

Definition 4. Bermudo et all [20], and Alp et all [37] presents the right or qb-derivative of
Ψ : [a, b]→ R at x ∈ [a, b] which is expressed as:

bDqΨ(x) =
Ψ(qx + (1− q)b)−Ψ(x)

(1− q)(b− x)
, x 6= b.

Definition 5. Tariboon et all [16], and Alp et all [37] present the left or qa-derivative of Ψ :
[a, b]→ R at x ∈ [a, b] which is expressed as:

aDqΨ(x) =
Ψ(x)−Ψ(qx + (1− q)a)

(1− q)(x− a)
, x 6= a.
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It would be appropriate to remind the classical definition of q-integral given in the
treatise of Gasper and Rahman, [49], relation (1.11.3), page 23

∫ a

0
Ψ(t)dq(t) = (1− q)a

∞

∑
n=0

qnΨ(qna), (0 < q < 1).

Definition 6. Bermudo et all [20], and Alp et all [37] present the right or qb-integral of Ψ :
[a, b]→ R at x ∈ [a, b] which is defined as:

∫ b

x
Ψ(t)bdqt = (1− q)(b− x)

∞

∑
n=0

qnΨ(qnx + (1− qn)b) = (b− a)
∫ 1

0
Ψ(tb + (1− t)x)dqt,

see also [49].

Definition 7. Alp et all [50], and Rajkovic et all [37] state the left or qa-integral of Ψ : [a, b]→ R
at x ∈ [a, b] which is defined as:

∫ x

a
Ψ(t)adqt = (1− q)(x− a)

∞

∑
n=0

qnΨ(qnx + (1− qn)a) = (b− a)
∫ 1

0
Ψ(tx + (1− t)a)dqt.

Definition 8. Alp et all [37] present the following equality for qa- integrals

∫ b

a
(t− a)α

adqt =
(b− a)α+1

[α + 1]q
,

for α ∈ R− {−1}.
For the fundamental properties of these q-derivatives and q-integrals, see for exam-

ple, [16,51,52]. Recently, new refinements and generalizations of q-Hermite-Hadamard
integral inequalities for q-differentiable functions were given in [37].

From now, we suppose that 0 < λ ≤ 1.
By using Lemma 2 from [37] we will state again the following three theorems.

Theorem 1. Alp et all [37] show that if the conditions of Lemma 2 [37] hold and the |aDqΨ| and
|bDqΨ| are convex on [a, b], then the following inequality holds:

| 1
2λ(b− a)

(∫ λb+(1−λ)a

a
Ψ(t)adqt +

∫ b

λa+(1−λ)b
Ψ(t)bdqt

)

− Ψ(λb + (1− λ)a) + Ψ(λa + (1− λ)b)
2

|

≤ λq(b− a)
2[2]q[3]q

[([3]q − λ[2]q)[|bDqΨ(b)|+ |aDqΨ(a)|]

+ λ[2]q[|bDqΨ(a)|+ |aDqΨ(b)|]].

Theorem 2. Alp et all [37] prove that if the conditions of Lemma 2 [37] hold and if the |aDqΨ|s
and |bDqΨ|s, s > 1 are convex, then the following inequality holds:

| 1
2λ(b− a)

(∫ λb+(1−λ)a

a
Ψ(t)adqt +

∫ b

λa+(1−λ)b
Ψ(t)bdqt

)
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− Ψ(λb + (1− λ)a) + Ψ(λa + (1− λ)b)
2

|

≤ λq(b− a)
2

(
1

[r + 1]q

) 1
r
[

(
[2]q − λ

[2]q
|bDqΨ(b)|s + λ

[2]q
|bDqΨ(a)|s

) 1
s

+

(
[2]q − λ

[2]q
|aDqΨ(a)|s + λ

[2]q
|aDqΨ(b)|s

) 1
s

],

where s−1 + r−1 = 1.

Theorem 3. Alp et all [37] demonstrate that if the conditions of Lemma 2 [37] hold and if the
|aDqθ|s and |bDqθ|s, s ≥ 1 are convex, then the following inequality holds:

| 1
2λ(b− a)

(∫ λb+(1−λ)a

a
Ψ(t)adqt +

∫ b

λa+(1−λ)b
Ψ(t)bdqt

)

− Ψ(λb + (1− λ)a) + Ψ(λa + (1− λ)b)
2

|

≤ λq(b− a)
2[2]q

[

(
([3]q − λ[2]q)|bDqΨ(b)|s + λ[2]q|bDqΨ(a)|s

[3]q

) 1
s

+

(
([3]q − λ[2]q)|aDqΨ(a)|s + λ[2]q|aDqΨ(b)|s

[3]q

) 1
s

].

3. Results

A new quantum identity with parameter is given below as an important instrument
in the demonstrations of the results of this section. Some new estimates of parametrized
q-Hermite-Hadamard-type integral inequalities for twice q-differentiable functions are
given below having as a starting point the results formulated in [37]. Moreover, sev-
eral new consequences, applications and examples are presented in order to check the
established results.

If Ψ : [a, b]→ R is a continuous function then the second qb-derivative of Ψ at t ∈ [a, b]
is given as:

bD2
qΨ(t) = bDq

(
bDqΨ(t)

)
=

Ψ(q2t + (1− q2)b)− [2]qΨ(qt + (1− q)b) + qΨ(t)
(1− q)2q(b− t)2 .

Similarly, we have
aD2

qΨ(t) = aDq
(

aDqΨ(t)
)

=
Ψ(q2t + (1− q2)a)− [2]qΨ(qt + (1− q)a) + qΨ(t)

(1− q)2q(t− a)2 .

We define

b
aSq(λ) =

(b− a)2

1 + q

∫ 1

0
q3t2[bD2

qΨ((1− λt)b + λta) + aD2
qΨ((1− λt)a + λtb)]dqt, (2)

The main purpose of this paper is to give inequalities for b
aSq(λ).
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Lemma 2. Let 0 < λ ≤ 1, and Ψ : [a, b]→ R be a twice q-differentiable function. If, in addition,
aD2

qΨ and bD2
qΨ are continuous and q-integrable functions over [a, b] then the following equality

takes place:

b
aSq(λ) =

1
λ3(b− a)

[
∫ b

λa+(1−λ)b
Ψ(t)bdqt +

∫ λb+(1−λ)a

a
Ψ(t)adqt]

− 1− q− q2

(1− q)(1 + q)λ2 [Ψ(λa + (1− λ)b) + Ψ(λb + (1− λ)a)]

− q
(1− q)(1 + q)λ2 [Ψ(λqa + (1− qλ)b) + Ψ(λqb + (1− qλ)a)].

In addition, we can obtain also,

b
aSq(λ) =

1
λ3(b− a)

[
∫ b

λqa+(1−λq)b
Ψ(t)bdqt +

∫ λqb+(1−λq)a

a
Ψ(t)adqt]

− q
(1− q)(1 + q)λ2 [Ψ(λqa + (1− λq)b) + Ψ(λqb + (1− λq)a)]

+
q3

(1− q)(1 + q)λ2 [Ψ(λa + (1− λ)b) + Ψ(λb + (1− λ)a)].

Proof. Denoting by I1 the expression
∫ 1

0 t2bD2
qΨ((1− λt)b + λta)dqt and by I2 the expres-

sion
∫ 1

0 t2
aD2

qΨ(a(1− λt) + λtb)dqt, we get b
aSq(λ) =

(b−a)2

1+q q3(I1 + I2).
From Definition 4, of the right q-derivative of Ψ, we successively have

I1 =
∫ 1

0
t2 bD2

qΨ(b(1− λt) + λta)dqt

=
∫ 1

0

1
(1− q)2λ2(b− a)2q

[Ψ(λtq2a + b(1− λtq2))

− [2]qΨ(λtqa + b(1− λtq) + qΨ(λta + (1− λt)b)]dqt

=
1

(1− q)(b− a)2λ2q
[

∞

∑
n=0

qnΨ(λqn+2a + b(1− λqn+2))

− [2]q
∞

∑
n=0

qnΨ(λqn+1a + b(1− λqn+1)) + q
∞

∑
n=0

qnΨ(λqna + b(1− λqn))]

=
1

(1− q)(b− a)2λ2q
{ 1

q2

∞

∑
m=0

qmΨ(λqma + b(1− λqm))

− Ψ(λa + (1− λ)b) + qΨ((1− λq)b + λqa)
q2

− [2]q
∑∞

m=0 qmΨ(λqma + (1− λqm)b)−Ψ(b(1− λ) + λa)
q

+ q
∞

∑
m=0

qmΦ(λqma + b(1− λqm))}.

By Definition 6, of the right q-integral of Ψ and calculus, it will be obtained,

I1 =
1 + q

(b− a)3λ3q3

∫ b

λa+(1−λ)b
Ψ(t) bdqt− 1− q− q2

(1− q)(b− a)2q3λ2 Ψ(b(1− λ) + λa)

− 1
(1− q)(b− a)2q2λ2 Ψ(b(1− λq) + λqa).

Similarly, by using Definition 5, of the left q-derivative of Ψ, we successively get
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I2 =
∫ 1

0
t2

aD2
qΨ(a(1− λt) + λtb)dqt

=
∫ 1

0

1
q(1− q)2λ2(b− a)2 [Ψ(q2λtb + a(1− q2λt))

− [2]qΨ(qλtb + a(1− qλt) + qΨ(λtb + a(1− λt))]dqt

=
1

(1− q)(b− a)2λ2q
[

∞

∑
n=0

qnΨ(λqn+2b + (1− λqn+2)a)

− [2]q
∞

∑
n=0

qnΨ(λqn+1b + (1− λqn+1)a)

+ q
∞

∑
n=0

qnΨ(qnλb + a(1− λqn))]

=
1

(1− q)(b− a)2λ2q
[
∑∞

m=0 qmΨ(qmλb + a(1− qmλ))

q2

− Ψ(λb + (1− λ)a) + qΨ(λqb + a(1− λq))
q2

− [2]q
∑∞

m=0 qmΨ(λqmb + (1− λqm)a)−Ψ(λb + (1− λ)a)
q

+ q
∞

∑
m=0

qmΨ(λqmb + (1− λqm)a)].

By Definition 7, of the left q-integral of Ψ and calculus, we have

I2 =
1 + q

(b− a)3λ3q3

∫ λb+(1−λ)a

a
Ψ(t)adqt− 1− q− q2

(1− q)(b− a)2λ2q3 Ψ(λb + (1− λ)a)

− 1
(b− a)2(1− q)λ2q2 Ψ(qλb + a(1− qλ)).

Then multiplying the result of the sum I1 + I2 by (b−a)2q3

1+q , it follows:

(b− a)2

1 + q
q3(I1 + I2) =

1
λ3(b− a)

[
∫ b

λa+(1−λ)b
Ψ(t)bdqt +

∫ λb+(1−λ)a

a
Ψ(t)adqt]

− 1− q− q2

(1− q2)λ2 [Ψ(λa + b(1− λ)) + Ψ(λb + a(1− λ))]

− q
(1− q2)λ2 [Ψ(λqa + b(1− λq)) + Ψ(λqb + a(1− λq))],

and we obtain the first desired equality.
For the second expression of b

aSq(λ), we have,

I1 =
1

(1− q)(b− a)2λ2q
[

∞

∑
n=0

qnΨ(λqn+2a + b(1− λqn+2))

− [2]q
∞

∑
n=0

qnΨ(λqn+1a + b(1− λqn+1)) + q
∞

∑
n=0

qnΨ(λqna + b(1− λqn))]

=
1

(1− q)(b− a)2λ2q
[
1
q

∞

∑
n=0

qn+1Ψ(λqn+2a + b(1− λqn+2))

−[2]q
∞

∑
n=0

qnΨ(λqn+1a + b(1− λqn+1))
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+qΨ((1− λ)b + λa) + q2
∞

∑
n=1

qn−1Ψ(λqna + b(1− λqn))]

=
1 + q

(b− a)3λ3q3

∫ b

λqa+(1−λq)b
Ψ(t)bdqt− Ψ(b(1− λq) + λqa)

(1− q)(b− a)2λ2q2 +
Ψ((1− λ)b + λa)
(1− q)(b− a)2λ2 .

Similar we will obtain below the expression of I2

I2 =
1 + q

(b− a)3λ3q3

∫ λqb+(1−λq)a

a
Ψ(t)adqt− Ψ(a(1− λq) + λqb)

(1− q)(b− a)2λ2q2 +
Ψ((1− λ)a + λb)
(1− q)(b− a)2λ2 .

Then multiplying the result of the sum I1 + I2 by (b−a)2q3

1+q , we get the second expression

of b
aSq(λ), which completes the proof.

Remark 1. First expression of b
aSq(λ) has the coefficient 1− q− q2 which can take positive and

also negative values, but the two integrals are defined on intervals which don’t contain q. Also the
second expression of b

aSq(λ) is easier, but the integrals are defined on intervals more complicated
which contain q.

In addition, expression of b
aSq(λ) from Lemma 2, but especially in the second expression is

preserving a symmetry of coefficients and terms.

Theorem 4. It will be assumed that the hypothesis of Lemma 2 are true. If |aD2
qΨ| and |bD2

qΨ| are
convex functions on [a, b] then we have:

|baSq(λ)| ≤
(b− a)2q3

[2]q[3]q[4]q
[([4]q − λ[3]q)(|bD2

qΨ(b)|

+|aD2
qΨ(a)|) + λ[3]q(|aD2

qΨ(b)|+ |bD2
qΨ(a)|)]. (3)

Proof. It will be used Lemma 2, obtaining:

|baSq(λ)| ≤
(b− a)2q3

[2]q
{
∫ 1

0
t2|bD2

qΨ((1− λt)b + λta)|dqt

+
∫ 1

0
t2|aD2

qΨ((1− λt)a + λtb)|dqt}.

Then taking into account the convexity of |aD2
qΨ| and |bD2

qΨ|, we find that

|baSq(λ)| ≤
q3(b− a)3

[2]q
{
∫ 1

0
t2[(1− λt)|bD2

qΨ(b)|+ λt|bD2
qΨ(a)|]dqt

+
∫ 1

0
t2[(1− λt)|aD2

qΨ(a)|+ λt|aD2
qΨ(b)|]dqt}



Symmetry 2023, 15, 1514 9 of 20

=
q3(b− a)2

[2]q
{[|bD2

qΨ(b)|+ |aD2
qΨ(a)|]

∫ 1

0
t2(1− λt)dqt

+ [|bD2
qΨ(a)|+ |aD2

qΨ(b)|]
∫ 1

0
λt3dqt}

=
q3(b− a)2

[2]q
{( 1

[3]q
− λ

[4]q
)[|bD2

qΨ(b)|+ |aD2
qΨ(a)|]

+
λ

[4]q
[|bD2

qΨ(a)|+ |aD2
qΨ(b)|]}.

So by calculus it will be obtained the inequality from previous theorem.

Remark 2. Now considering λ = 1 in Theorem 4 the following trapezoid type inequality takes place:

|baSq(1)| = |
1

b− a
[
∫ b

a
Ψ(t) bdqt +

∫ b

a
Ψ(t) adqt]− 1− q− q2

1− q2 (Ψ(a) + Ψ(b))

− q
1− q2 [Ψ(b(1− q) + qa) + Ψ(qb + (1− q)a)]|

≤ q3(b− a)2

[2]q[3]q[4]q
{q3[|bD2

qΨ(b)|+ |aD2
qΨ(a)|] + [3]q[|bD2

qΨ(a)|+ |aD2
qΨ(b)|]}.

Remark 3. Now taking λ = 1
2 in Theorem 4 the following trapezoid type inequality holds:

|
b
aSq(

1
2 )

8
| = | 1

b− a
[
∫ b

a+b
2

Ψ(t) bdqt +
∫ a+b

2

a
Ψ(t) adqt]− 1− q− q2

1− q2 Ψ(
a + b

2
)

− q
2(1− q2)

[Ψ(b(1− q
2
) +

q
2

a) + Ψ(
q
2

b + (1− q
2
)a)]|

≤ q3(b− a)2

16[2]q[3]q[4]q
{(2[4]q − [3]q)[|bD2

qΨ(b)|+ |aD2
qΨ(a)|]

+ [3]q[|bD2
qΨ(a)|+ |aD2

qΨ(b)|]}.

Remark 4. Now we put λ = 1
[2]q

in Theorem 4 and we have:

| 1
b− a

[
∫ b

a+qb
[2]q

Ψ(t) bdqt +
∫ b+qa

[2]q

a
Ψ(t) adqt]− 1

[2]q
(Ψ(

qb + a
[2]q

) + Ψ(
qa + b
[2]q

))|

≤ q3(b− a)2

[2]5q[3]q[4]q
{([2]q[4]q − [3]q)[|bD2

qΨ(b)|+ |aD2
qΨ(a)|]

+ [3]q[|bD2
qΨ(a)|+ |aD2

qΨ(b)|]}.

Theorem 5. We suppose that the hypothesiss of Lemma 2 takes place. If |aD2
qΨ|σ and |bD2

qΨ|σ are
strongly convex functions on [a, b] for modulus c with σ ≥ 1, then next inequality is true:

|baSq(λ)| ≤
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≤ (b− a)2q3

[2]q[3]
1− 1

σ
q

{[
[4]q − λ[3]q
[3]q[4]q

|bD2
qΨ(b)|σ + λ

[4]q
|bD2

qΨ(a)|σ − c(b− a)2λ
[5]q − λ[4]q
[4]q[5]q

]
1
σ

+ [
[4]q − λ[3]q
[3]q[4]q

|aD2
qΨ(a)|σ + λ

[4]q
|aD2

qΨ(b)|σ − c(b− a)2λ
[5]q − λ[4]q
[4]q[5]q

]
1
σ },

Proof. It will be used the modulus properties, the strong convexity of |aD2
qΨ|σ and |bD2

qΨ|σ
and the power mean inequality, obtaining:

|baSq(λ)| ≤

≤ (b− a)2

[2]q
{
∫ 1

0
q3t2|bD2

qΨ((1− λt)b + λta)|dqt +
∫ 1

0
q3t2|aD2

qΨ((1− λt)a + λtb)|dqt}

≤ q3(b− a)2

[2]q

(∫ 1

0
t2dqt

)1− 1
σ

[

(∫ 1

0
t2|bD2

qΨ((1− λt)b + λta)|σdqt
) 1

σ

+

(∫ 1

0
t2|aD2

qΨ((1− λt)a + λtb)|σdqt
) 1

σ

],

and

|baSq(λ)| ≤
q3(b− a)2

[2]q

(
1
[3]q

)1− 1
σ

×

×[
(∫ 1

0
t2(1− λt)|bD2

qΨ(b)|σdqt +
∫ 1

0
λt3|bD2

qΨ(a)|σdqt− cλ(b− a)2
∫ 1

0
t3(1− λt)dqt

) 1
σ

+

(∫ 1

0
t2(1− λt)|aD2

qΨ(a)|σdqt +
∫ 1

0
λt3|aD2

qΨ(b)|σdqt− cλ(b− a)2
∫ 1

0
t3(1− λt)dqt

) 1
σ

]

=
q3(b− a)2

[2]q
1

[3]1−
1
σ

q

{[
[4]q − λ[3]q
[3]q[4]q

|bD2
qΨ(b)|σ + λ

[4]q
|bD2

qΨ(a)|σ− c(b− a)2λ
[5]q − λ[4]q
[4]q[5]q

]
1
σ

+[
[4]q − λ[3]q
[3]q[4]q

|aD2
qΨ(a)|σ + λ

[4]q
|aD2

qΨ(b)|σ − c(b− a)2λ
[5]q − λ[4]q
[4]q[5]q

]
1
σ },

and the proof is completed.

Theorem 6. Under conditions of Lemma 2, if |aD2
qΨ|r and |bD2

qΨ|r are strongly convex functions
on [a, b] with modulus c, when 1

s +
1
r = 1 and r > 1 then the following inequality takes place:

|baSq(λ)| ≤
q3(b− a)2

[2]q[2s + 1]
1
s
q

×

×{[
[2]q − λ

[2]q
|bD2

qΨ(b)|r + λ

[2]q
|bD2

qΨ(a)|r − λc(b− a)2 [3]q − λ[2]q
[2]q[3]q

]
1
r

+[
[2]q − λ

[2]q
|aD2

qΨ(a)|r + λ

[2]q
|aD2

qΨ(b)|r − λc(b− a)2 [3]q − λ[2]q
[2]q[3]q

]
1
r }.

Proof. By applying now, the properties of modulus, and the Holder’s inequality, it will
be obtained,

|baSq(λ)| ≤
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≤ (b− a)2q3

[2]q
{
∫ 1

0
t2|bD2

qΨ((1− λt)b + λta)|dqt +
∫ 1

0
t2|aD2

qΨ((1− λt)a + λtb)|dqt}

≤ q3(b− a)2

[2]q

(∫ 1

0
t2sdqt

) 1
s
{
(∫ 1

0
|bD2

qΨ((1− λt)b + λta)|rdqt
) 1

r

+

(∫ 1

0
|aD2

qΨ((1− λt)a + λtb)|rdqt
) 1

r
},

and by using the strongly convexity of the functions |aD2
qΨ|r and |bD2

qΨ|r on [a, b] with
modulus c, we get,

|baSq(λ)| ≤
q3(b− a)2

[2]q
1

[2s + 1]
1
s
q

×

×{
(∫ 1

0
((1− λt)|bD2

qΨ(b)|r + λt|bD2
qΨ(a)|r)dqt− λc(b− a)2

∫ 1

0
t(1− λt)dqt

) 1
r

+

(∫ 1

0
((1− λt)|aD2

qΨ(a)|r + λt|aD2
qΨ(b)|r)dqt− λc(b− a)2

∫ 1

0
t(1− λt)dqt

) 1
r
}

=
q3(b− a)2

[2]q[2s + 1]
1
s
q

{[
[2]q − λ

[2]q
|bD2

qΨ(b)|r + λ

[2]q
|bD2

qΨ(a)|r − λc(b− a)2 [3]q − λ[2]q
[2]q[3]q

]
1
r

+[
[2]q − λ

[2]q
|aD2

qΨ(a)|r + λ

[2]q
|aD2

qΨ(b)|r − λc(b− a)2 [3]q − λ[2]q
[2]q[3]q

]
1
r }.

Thus, the proof is finished.

Remark 5. If we put λ = 1 in Theorem 5, then the following trapezoid type inequality holds:

|baSq(1)| ≤
q3(b− a)2

[2]q[3]
1− 1

σ
q

×

× q3(b− a)2

[2]q[3]
1− 1

σ
q

{[ q3

[3]q[4]q
|bD2

qΨ(b)|σ + 1
[4]q
|bD2

qΨ(a)|σ − c(b− a)2 q4

[4]q[5]q
]

1
σ

+ [
q3

[3]q[4]q
|aD2

qΨ(a)|σ + 1
[4]q
|aD2

qΨ(b)|σ − c(b− a)2 q4

[4]q[5]q
]

1
σ }.

Remark 6. If we take λ = 1
2 in Theorem 5, then we obtain the following midpoint type inequality:

|baSq(
1
2
)| ≤ q3(b− a)2

2
1
σ [2]q[3]

1− 1
σ

q [4]
1
σ
q

×

×{[
2[4]q − [3]q

[3]q
|bD2

qΨ(b)|σ + |bD2
qΨ(a)|σ − c(b− a)2 2[5]q − [4]q

2[5]q
]

1
σ

+[
2[4]q − [3]q

[3]q
|aD2

qΨ(a)|σ + |aD2
qΨ(b)|σ − c(b− a)2 2[5]q − [4]q

2[5]q
]

1
σ }.

Remark 7. If it is assigned in Theorem 6, λ = 1, then we have next trapezoid type inequality:

|baSq(1)| ≤
q3(b− a)2

[2]q[2s + 1]
1
s
q

×
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×{[q|bD2
qΨ(b)|r + |bD2

qΨ(a)|r − c(b− a)2 q2

[3]q
]

1
r

+[q|aD2
qΨ(a)|r + |aD2

qΨ(b)|r − c(b− a)2 q2

[3]q
]

1
r }.

Remark 8. If we take λ = 1
2 in Theorem 6, then the following midpoint type inequality it

is obtained:

|baSq(
1
2
)| ≤ q3(b− a)2

2
1
r [2]

1+ 1
r

q [2s + 1]
1
s
q

{[(2[2]q − 1)|bD2
q Ψ(b)|r + |bD2

q Ψ(a)|r − c(b− a)2 2[3]q − [2]q
2[3]q

]
1
r

+[(2[2]q − 1)|aD2
qΨ(a)|r + |aD2

qΨ(b)|r − c(b− a)2 2[3]q − [2]q
2[3]q

]
1
r }.

Theorem 7. We assume that the conditions of Lemma 2 are true. If |aD2
qΨ|σ and |bD2

qΨ|σ are
n-polynomial convex functions on [a, b], and σ ≥ 1, then we have:

|baSq(λ)| ≤
q3(b− a)2

[2]q[3]
1− 1

σ
q n

1
σ

×

×{[|bD2
qΨ(b)|σ

n

∑
s=1

(
1
[3]q
− λs

[s + 3]q
) + |bD2

qΨ(a)|σ
n

∑
s=1

(
1
[3]q
−

n

∑
k=0

(
k
s

)
λs−k

[s− k + 3]q
)]

1
σ

+[|aD2
qΨ(a)|σ

n

∑
s=1

(
1
[3]q
− λs

[s + 3]q
) + |aD2

qΨ(b)|σ
n

∑
s=1

(
1
[3]q
−

n

∑
k=0

(
k
s

)
λs−k

[s− k + 3]q
)]

1
σ },

where, (k
s) =

k!
s!(k−s)! .

Proof. We can write as in the proof of Theorem 5 by using the power mean inequality and
then the n-polynomial convexity of |aD2

qΨ|σ and |bD2
qΨ|σ, that

|baSq(λ)| ≤
q3(b− a)2

[2]q

(
1
[3]q

)1− 1
σ

[

(∫ 1

0
t2|bD2

qΨ((1− λt)b + λta)|σdqt
) 1

σ

+

(∫ 1

0
t2|aD2

qΨ((1− λt)a + λtb)|σdqt
) 1

σ

] ≤ q3(b− a)2

[2]q

(
1
[3]q

)1− 1
σ

×

×{[
∫ 1

0
t2

(
|bD2

qΨ(b)|σ 1
n

n

∑
s=1

(1− (λt)s) + |bD2
qΨ(a)|σ 1

n

n

∑
s=1

(1− (1− λt)s)

)
dqt]

1
σ

+[
∫ 1

0
t2

(
|aD2

qΨ(a)|σ 1
n

n

∑
s=1

(1− (λt)s) + |aD2
qΨ(b)|σ 1

n

n

∑
s=1

(1− (1− λt)s)

)
dqt]

1
σ }.

Then following the calculus, we find that

|baSq(λ)| ≤
q3(b− a)2

[2]q[3]
1− 1

σ
q

{[
|bD2

qΨ(b)|σ

n

n

∑
s=1

∫ 1

0
(t2 − λsts+2)dqt

+
|bD2

qΨ(a)|σ

n

n

∑
s=1

∫ 1

0
(t2 − t2(1− λt)s)dqt]

1
σ

+[
|aD2

qΨ(a)|σ

n

n

∑
s=1

∫ 1

0
(t2 − λsts+2)dqt +

|aD2
qΨ(b)|σ

n

n

∑
s=1

∫ 1

0
(t2 − t2(1− λt)s)dqt]

1
σ }.
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If we denote A = ∑n
s=1
∫ 1

0 (t
2 − λsts+2)dqt and B = ∑n

s=1
∫ 1

0 (t
2 − t2(1− λt)s)dqt, we

get by calculus

A =
n

∑
s=1

(
1
[3]q
− λs

[s + 3]q
)

and

B =
n

∑
s=1

(
1
[3]q
−

n

∑
k=0

s!
k!(s− k)!

λs−k

[s− k + 3]q
) =

n

∑
s=1

(
1
[3]q
−

n

∑
k=0

(
k
s

)
λs−k

[s− k + 3]q
),

which leads to desired inequality.

Theorem 8. We assume that the conditions of Lemma 2 are true and let s, r ∈ R, r > 1 with
1
s +

1
r = 1. If |aD2

qΨ|s and |bD2
qΨ|s are n-polynomial convex functions on [a, b], then we have:

|baSq(λ)| ≤
q3(b− a)2

[2]q[2s + 1]
1
s
q n

1
r

×

×{[|bD2
qΨ(b)|r

n

∑
k=1

(1− λk

[k + 1]q
) + |bD2

qΨ(a)|r
n

∑
k=1

(1−
k

∑
i=0

(
k
i

)
λk−i

[k− i + 1]q
)]

1
r

+[|aD2
qΨ(a)|r

n

∑
k=1

(1− λk

[k + 1]q
) + |aD2

qΨ(b)|r
n

∑
k=1

(1−
k

∑
i=0

(
k
i

)
λk−i

[k− i + 1]q
)]

1
r }.

Proof. As in the proof of Theorem 6, by using Holder’s inequality and then the n-polynomial
convexity of |aD2

qΨ|s and |bD2
qΨ|s, we have,

|baSq(λ)| ≤

≤ (b− a)2q3

[2]q
{
∫ 1

0
t2|bD2

qΨ((1− λt)b + λta)|dqt +
∫ 1

0
t2|aD2

qΨ((1− λt)a + λtb)|dqt}

≤ q3(b− a)2

[2]q

(∫ 1

0
t2sdqt

) 1
s
{
(∫ 1

0
|bD2

qΨ((1− λt)b + λta)|rdqt
) 1

r

+

(∫ 1

0
|aD2

qΨ((1− λt)a + λtb)|rdqt
) 1

r
} ≤ q3(b− a)2

[2]q
1

[2s + 1]
1
s
q

×

×{
(∫ 1

0
(

1
n

n

∑
k=1

(1− (λt)k)|bD2
qΨ(b)|r + 1

n

n

∑
k=1

(1− (1− λt)k)|bD2
qΨ(a)|r)dqt

) 1
r

+

(∫ 1

0
(

1
n

n

∑
k=1

(1− (λt)k)|aD2
qΨ(a)|r + 1

n

n

∑
k=1

(1− (1− λt)k)|aD2
qΨ(b)|r)dqt

) 1
r

},

or

|baSq(λ)| ≤
q3(b− a)2

[2]q
1

[2s + 1]
1
s
q n

1
r

×

×{
(
|bD2

qΨ(b)|r
n

∑
k=1

∫ 1

0
(1− λktk)dqt + |bD2

qΨ(a)|r
n

∑
k=1

∫ 1

0
(1− (1− λt)k)dqt

) 1
r

+

(
|aD2

qΨ(a)|r
n

∑
k=1

∫ 1

0
(1− λktk)dqt + |aD2

qΨ(b)|r
n

∑
k=1

∫ 1

0
(1− (1− λt)k)dqt

) 1
r

}.
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By calculus, evaluating the last four integrals involved in previous inequality, we find
the desired inequality.

Theorem 9. We suppose that all of the conditions of Lemma 2 are satisfied. If |aD2
qΨ|r and |bD2

qΨ|r

are strongly quasi-convex convex functions on [a, b] for modulus c, where r > 1, with 1
s +

1
r = 1

then we have:

|baSq(λ)| ≤
q3(b− a)2

[2]q[2s + 1]
1
s
q

×

×{[max{|bD2
qΨ(b)|r, |bD2

qΨ(a)|r − cλ(b− a)2 [3]q − λ[2]q
[2]q[3]q

]
1
r

+[max{|aD2
qΨ(a)|r, |aD2

qΨ(b)|r − cλ(b− a)2 [3]q − λ[2]q
[2]q[3]q

]
1
r }.

Proof. We use the modulus properties, Holder’s inequality and the definition of quasi-
convex functions with modulus c for |aD2

qΨ|r and |bD2
qΨ|r, having

|baSq(λ)| ≤
q3(b− a)2

[2]q[2s + 1]
1
s
q

{[
∫ 1

0
(max{|bD2

qΨ(b)|r, |bD2
qΨ(a)|r} − cλt(1− λt)(b− a)2)dqt]

1
r

+[
∫ 1

0
(max{|aD2

qΨ(a)|r, |aD2
qΨ(b)|r} − cλt(1− λt)(b− a)2)dqt]

1
r },

or

|baSq(λ)| ≤
q3(b− a)2

[2]q[2s + 1]
1
s
q

×

×{[max{|bD2
qΨ(b)|r, |bD2

qΨ(a)|r − cλ(b− a)2
∫ 1

0
(t− λt2)dqt]

1
r

+[max{|aD2
qΨ(a)|r, |aD2

qΨ(b)|r − cλ(b− a)2
∫ 1

0
(t− λt2)dqt]

1
r }.

An easy calculus shows that previous integral,
∫ 1

0 (t− λt2)dqt =
[3]q−λ[2]q
[2]q [3]q

, and the
proof is completed.

Example 1. Let consider the function Ψ : [0, 1] → R defined by Ψ(x) = x4 with λ = 1, which
satisfies the conditions of Theorem 4. By calculus, under these hypothesiss, we get for the left hand
side of the inequality (3), the expression,

|baSq(1)| = |
1

b− a
[
∫ b

a
Ψ(t)bdqt +

∫ b

a
Ψ(t)adqt]− 1− q− q2

1− q2 [Ψ(a) + Ψ(b)]

− q
1− q2 [Ψ(b(1− q) + qa) + Ψ(qb + a(1− q))]|,

where we put a = 0 and b = 1, obtaining,

|10Sq(1)| = |
∫ 1

0
Ψ(t)1dqt +

∫ 1

0
Ψ(t)0dqt− 1− q− q2

1− q2 [Ψ(0) + Ψ(1)]−

− q
1− q2 [Ψ(1− q) + Ψ(q)]|

= | 1
[5]q

+ (1− q)
∞

∑
0

qn(1− qn)4 − 1− q− q2 + q5 + q(1− q)4

1− q2 |.
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By calculus we obtain,

|10Sq(1)| = |1 +
2
[5]q
− 4

[2]q
+

6
[3]q
− 4

[4]q
− 1− q− q2 + q(1− q)4

1− q2 |.

For the right hand side of the inequality (3), we have

q3(b− a)2

[2]q[3]q[4]q
{([4]q − [3]q)[|bD2

qΨ(b)|+ |aD2
qΨ(a)|] + [3]q[|bD2

qΨ(a)|+ |aD2
qΨ(b)|]}

=
q3

[2]q[3]q[4]q
{([4]q − [3]q)[|1D2

qΨ(1)|+ |0D2
qΨ(0)|] + [3]q[|1D2

qΨ(0)|+ |0D2
qΨ(1)|]}

=
q3

[2]q[3]q[4]q
{6[2]q([4]q − [3]q) + [3]q(q5 + 2q4 − q3 − 5q2 + 3 + [3]q[4]q)},

where we put a = 0 and b = 1.
On the other hand, by calculus, we have 0D2

qΨ(x) = [4]q[3]qx2, thus 0D2
qΨ(0) = 0 and

0D2
qΨ(1) = [4]q[3]q. Using that,

1D2
qΨ(x) =

(q2x + 1− q2)4 − [2]q(qx + 1− q)4 + qx4

q(1− q)2(1− x)2

we find 1D2
qΨ(0) = q5 + 2q4 − q3 − 5q2 + 3 and 1D2

qΨ(1) = 6(q + 1). The graphic of the
function 1D2

qΨ(x) considered as function of two variables x and q, is given in Figure 1b. We see
that the function is positive as 0D2

qΨ(x).
One can see the validity of the inequality (3) in Figure 1a, where the green line in graph

represents the expression of the left member of the inequality (3) and the expression of the right
member represents the magenta line in graph.

We used here the Matlab R2023a software for obtaining Figure 1 and also partial in calculus of
last two derivatives.

Figure 1. (a) An example for the inequality (3) from Theorem 4 for the function Ψ(x) = x4 and
a = 0, b = 1, when λ = 1; (b) Graphic for the functions 1D2

q Ψ(x), considered as function of two
variables x and q, from Example 1 when Ψ(x) = x4, a = 0, b = 1, and λ = 1.

Example 2. For the same function Ψ : [0, 1]→ R defined by Ψ(x) = x4, but with λ = 1
2 , which

satisfies the conditions of Theorem 4, we obtain for the left hand side of the inequality (3), by similar
calculus, the expression,

|10Sq(
1
2
)| = 8[

∫ 1

1
2

Ψ(t)1dqt +
∫ 1

2

0
Ψ(t)0dqt]− 8

1− q− q2

1− q2
1
24 −

4q
1− q2 [(1−

q
2
)4 +

( q
2

)4
]

= 4− 8
[2]q

+
6
[3]q
− 2

[4]q
+

1
2[5]q

− 1− q− q2

2(1− q2)
− 4q

1− q2 [(1−
q
2
)4 +

( q
2

)4
].
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The right hand side of the inequality (3) becomes for λ = 1
2 ,

q3

[2]q[3]q[4]q
{([4]q −

[3]q
2

)[|1D2
qΨ(1)|+ |0D2

qΨ(0)|] +
[3]q

2
[|1D2

qΨ(0)|+ |0D2
qΨ(1)|]}

=
q3

[2]q[3]q[4]q
{6[2]q([4]q −

[3]q
2

) +
[3]q

2
(q5 + 2q4 − q3 − 5q2 + 3 + [3]q[4]q)}.

Like in Example 1, the red line in Figure 2 represents the left hand side of the inequality (3)
from Theorem 4, and the blue line represents the right hand side of (3) and the inequality is checked.

Figure 2. An example for the inequality (3) from Theorem 4 for the function Ψ(x) = x4 and
a = 0, b = 1, when λ = 1

2 .

Example 3. Let consider the function Ψ : [0, 1] → R defined by θ(x) = x6 with λ = 1, which
satisfies the conditions of Theorem 4. By calculus, under these hypothesis, we get for the left hand
side of the inequality (3), the expression,

|baSq(1)| = |
1

b− a
[
∫ b

a
Ψ(t)bdqt +

∫ b

a
Ψ(t)adqt]− 1− q− q2

1− q2 [Ψ(a) + Ψ(b)]

− q
1− q2 [Ψ(b(1− q) + qa) + Ψ(qb + a(1− q))]|,

where we put a = 0 and b = 1, obtaining,

|10Sq(1)| = |
∫ 1

0
Ψ(t)1dqt +

∫ 1

0
Ψ(t)0dqt− 1− q− q2

1− q2 [Ψ(0) + Ψ(1)]−

− q
1− q2 [Ψ(1− q) + Ψ(q)]|

= | 1
[7]q

+ (1− q)
∞

∑
0

qn(1− qn)6 − 1− q− q2 + q7 + q(1− q)6

1− q2 |.

By calculus we obtain,

|10Sq(1)| = |1 +
2
[7]q
− 6

[2]q
+

15
[3]q
− 20

[4]q
+

15
[5]q
− 6

[6]q
− 1− q− q2 + q(1− q)6 + q7

1− q2 |.

For the right hand side of the inequality (3), we have

q3(b− a)2

[2]q[3]q[4]q
{(q3[|bD2

qΨ(b)|+ |aD2
qΨ(a)|] + [3]q[|bD2

qΨ(a)|+ |aD2
qΨ(b)|]}

=
q3

[2]q[3]q[4]q
{q3[|1D2

qΨ(1)|+ |0D2
qΨ(0)|] + [3]q[|1D2

qΨ(0)|+ |0D2
qΨ(1)|]}

where we put a = 0 and b = 1.
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On the other hand, by calculus, we have 0D2
qΨ(x) = [6]q[5]qx4, thus 0D2

qΨ(0) = 0 and

0D2
qΨ(1) = [6]q[5]q. Using that,

1D2
qΨ(x) =

(q2x + 1− q2)6 − [2]q(qx + 1− q)6 + qx6

q(1− q)2(1− x)2

we find 1D2
qθ(0) = q9 + 2q8 − 3q7 − 8q6 + 2q5 + 11q4 + 5q3 − 10q2 − 5q + 5 and 1D2

qΨ(1) =
15q + 15. The graphic of the function 1D2

qΨ(x), considered as function of two variables x and q, is
given in Figure 3b.

One can see the validity of the inequality (3) in Figure 3a, where the green line in graph
represents the expression of the left member of the inequality (3) and the expression of the right
member represents the magenta line in graph.

We used here the Matlab R2023a for obtaining Figure 3 and also partial in calculus of last
two derivatives.

Figure 3. (a) An example for the inequality (3) from Theorem 4 for the function Ψ(x) = x6, a = 0, b = 1
and λ = 1; (b) Graphic for the function 1D2

qΨ(x) from Example 3, considered as function of two variable
x and q, when Ψ(x) = x6, a = 0, b = 1, and λ = 1.

Example 4. For the function Ψ : [0, 1]→ R defined by θ(x) = (1− x)2, but with λ = 1, which
satisfies the conditions of Theorem 4, we obtain for the left hand side of the inequality (3), by similar
calculus, the expression,

|baSq(1)| = |
1

b− a
[
∫ b

a
Ψ(t)bdqt +

∫ b

a
Ψ(t)adqt]− 1− q− q2

1− q2 [Ψ(a) + Ψ(b)]

− q
1− q2 [Ψ(b(1− q) + qa) + Ψ(qb + a(1− q))]|,

where we put a = 0 and b = 1, obtaining,

|10Sq(1)| = |
∫ 1

0
(1− t)2 1dqt +

∫ 1

0
(1− t)2

0dqt− 1− q− q2

1− q2 −

− q
1− q2 [q

2 + (1− q)2]| = 2q3

q2 + q + 1

The right hand side of the inequality (3) becomes for λ = 1,

q3(b− a)2

[2]q[3]q[4]q
{(q3[|bD2

qΨ(b)|+ |aD2
qΨ(a)|] + [3]q[|bD2

qΨ(a)|+ |aD2
qΨ(b)|]}

=
q3

[2]q[3]q[4]q
{q3[|1D2

qΨ(1)|+ |0D2
qΨ(0)|] + [3]q[|1D2

qΨ(0)|+ |0D2
qΨ(1)|]}

where we put a = 0 and b = 1.
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On the other hand, by calculus, we have

0D2
qΨ(x) =

q(1− x)2 − [2]q(1− qx)2 + (1− q2x)2

qx2(1− q)2 ,

thus by calculus, 0D2
qΨ(x) = [2]q and from here, 0D2

qΨ(0) = [2]q and 0D2
qΨ(1) = [2]q. We find,

1D2
qΨ(x) = [2]q, 1D2

qθ(0) = [2]q and 1D2
qΨ(1) = [2]q. Therefore the right member becomes

2q3

q2 + q + 1
,

and we have equality.

4. Discussion and Conclusions

The main findings of this study prove some new parametrized q-Hermite-Hadamard
like type integral inequalities for functions whose second left and right q-derivative satisfies
several different types of convexities. Some basic inequalities as q-Holder’s integral in-
equality and q-power mean inequality have been used in order to obtain the new estimated
bounds. An auxiliary q-lemma was utilized as a main tool in our proofs. Symmetry can
offer an advantage in study of many processes and phenomena from nature. Interesting
consequences arise for special choices of the parameter and the corresponding cases were
discussed in detail.

We used the Matlab R2023a software for figures and for some calculus in the examples.
Several consequences, examples and applications were given to illustrate the outcome of
the research.

Furthermore, it is interesting to extend such findings to other new kinds of convexities,
(p, q)-calculus, and q-fractional inequalities, which could be some good generalizations.

Even between the concept of convexity and the concept of symmetry there is a strong
correlation, these two having many common ground to develop. This shows that the
conclusions reached are pretty consistent. The study could be useful for the analysis of
utility, distribution of taxes and revenues.

Overall, we hope that our results will improve the existing literature in the field.
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