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We consider conditions for the existence of boundary modes in non-Hermitian systems with edges
of arbitrary co-dimension. Through a universal formulation of formation criteria for boundary
modes in terms of local Green functions, we outline a generic perspective on the appearance of
such modes and generate corresponding dispersion relations. In the process, we explain the skin
effect in both topological and non-topological systems, exhaustively generalizing bulk-boundary
correspondence in the presence of non-Hermiticity. This is accomplished via a doubled Green’s
function, inspired by doubled Hamiltonian methods used to classify Floquet and, more recently, non-
Hermitian topological phases. Our work constitutes a general tool, as well as, a unifying perspective
for this rapidly evolving field. Indeed, as a concrete application we find that our method can expose
novel non-Hermitian topological regimes beyond the reach of previous methods.

The relaxation of Hermiticity allows new sym-
metries and promises novel topological phases [1–
9]. Recent experiments [10–14] observe general-
izations of concepts from Hermitian systems [15,
16], but depend on fine-tuned gain and loss sym-
metries, e.g. PT symmetry [17–19]. Some aspects
a priori appear unphysical, such as the pile-up of
bulk states at system edges, the non-Hermitian
skin effect [7, 20–23], which suggests an absence
of bulk-boundary correspondences [6, 20, 24–27]–
boundary modes reflecting topological degener-
acy in the bulk spectrum [28–36] that lay the
foundation for the classification and observation
of topological phases [29, 37–40]. Here, we in-
troduce a general framework, resting on univer-
sal Green’s function classification technology [37],
to formulate an exhaustive description of possi-
ble boundary modes and their connection to bulk
topology. Through this physical, experimentally
accessible, observable, we generalize notions of
bulk boundary correspondence, explain the non-
Hermitian skin effect, and uncover novel interme-
diate regimes. An otherwise Hermitian system is
tuned from one non-trivial topological phase to
another by adding generic non-Hermiticity, sug-
gesting novel properties of real systems under
open conditions.

Non-Hermitian Band Topology - Before addressing
possible bulk boundary correspondences, we first briefly
describe possible band gaps and topologies with respect
to which these can be defined. Hermitian symmetry pro-
tected topological phases (SPTs) are classified with re-
spect to a band gap [28–36]. Non-Hermitian spectra are,
however, generically complex. In the complex plane, a
band gap can be either a line gap between two bands,
Fig. 1a, or the closed region between two bands, Fig. 1c
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[6, 15]. We define topology with respect to the gap center
as is done for Hermitian SPTs. The presence of a pro-
tected line/band gap (Fig. 1a,c) generates two disjoint
regions of the complex plane just as a band gap does on
the real axis. Thus, results from Hermitian band topol-
ogy must hold for line/band gaps.

Line/band gaps are not, however, a complete picture of
non-Hermitian band topology. Band topology may also
be defined with respect to the band center, such as the
inseparable bands [15] in Fig. 1b [1, 3, 4]. Point gaps are
unique to non-Hermitian systems and may ascribe a net
non-trivial system topology [41]. They generate a simply-
connected punctured plane, whose topology is different
from the two disjoint regions generated by a band gap.
This geometric interpretation of different band gaps will
guide the development of our formalism below. In fact,
it implies the bulk topological invariant must change as
a line gap closes into a point gap through the touching
of isolated bands (Fig. 1b) [1, 3, 4].

Point gaps are generically present in addition to
band/line gaps, as bands form closed loops on the
complex plane. And, line to point gap closings are not
fine tuned, only requiring bands enclose a single point,
see Fig. 1. Under open boundary conditions, however,
bands are no longer guaranteed to close and point gaps
are not generically preserved. Therefore, one should not
expect traditional bulk boundary correspondence for
point gap topological phases, as we demonstrate below.

Diagnosing Edge-Localized Bound States - All forma-
tion criteria for edge modes can be obtained from the
in-gap zeros of Green’s function restricted to the rele-
vant edge of the system [37, 39, 42]. The idea is that the
full Green’s function of a system with an on-site potential
V is given by

G(ω,k) = (1−G0(ω,k)V)−1G0(ω,k), (1)

where we have suppressed indices on the possible matrix
structure of V that is assumed to have no spatial depen-
dence. Restricting the system to an edge, poles of the
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Non-Hermitian Gap Conditions
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FIG. 1. Possible boundary modes with respect to the different band gap in non-Hermitian system. The top row presents Bloch
bands on the complex plane generated by non-Hermitian Hamiltonians and their respective complex conjugates, showcasing
band gaps (a,c) and a point gap (b). The second row illustrates the mapping of two (complex) single band gaps to a one (real)

doubled band gap (Green/Purple arrows indicate gaps), Ĥ
† → −E and Ĥ → +E, with the blue-red smear representing the

new degenerate bands. Curves crossing the gap depict a topological example of in-gap doubled Green’s function G eigenvalues,
see Eq. (4). Gapless bands (b) become indistinguishable [15], and a line gap (a) protects zeros of G crossing from red (blue) to
blue (red) bands, while bands in (c) may have both point gap invariants (crossing zero in purple gap) and band gap invariants
(red to blue) [1, 4].

Green’s function correspond to

det
[
G0(ω,k‖, r⊥ = 0)V − 1

]
= 0, (2)

where k‖ and r⊥ refer to the unbroken in-plane momenta
and perpendicular coordinates along an edge of arbitrary
co-dimension (we focus on co-dimension-1) [37].

Unlike their trivial counterparts, Hermitian topo-
logical phases must have in-gap solutions of Eq. 2 for
any impurity strength approaching an edge, |V| → ∞
[37]. Therefore, zeros of the restricted in-gap Green’s
function, G0(ε,k‖, r⊥ = 0), correspond to topological
edge-localized bound states. And, the locations of the
Green’s function zeros ω∗(k‖) as a function of k‖ form,
by definition, a dispersion relation for the edge mode.
Furthermore, counting Green’s function zeros between
bands determines the change in topological invariant
from one band to the next [43], see Supplemental
Material I for more detail.

Doubled Green’s Function - We cannot directly apply
the above formalism to a non-Hermitian system. Indeed,
projection to an edge can destroy the point gap (Fig. 1
b). In close analogy to Floquet SPTs [44], given a non-
Hermitian Hamiltonian H, we, therefore, define a Hermi-

tian doubled Hamiltonian,

Ĥ =

(
0 Ĥ

Ĥ
†

0

)
. (3)

It maps the bands of Ĥ to positive energies and the

bands of Ĥ
†

to negative energies, see Fig. 1. Accordingly,
the doubled topology encodes the sub-block, Ĥ, topology
with respect to the gap at E = 0[1, 4].

We define a doubled Green’s function corresponding to
the doubled Hamiltonian,

G(ω) =
G0(ω

1− V̂G0(ω)
, with G0(ω) =

1

ω − Ĥ0

, (4)

where V̂ is the doubled impurity potential, V(r⊥ = 0),

and Ĥ = Ĥ0 + V̂. Being Hermitian, the topological edge
states correspond to the zeros of the projected doubled
Green’s function, as before (Supplemental Material II.2).

Next, we extract the physical meaning of these edge
modes by relating doubled Green’s function zeros to those
of the single Green’s function. Specifically, we parame-
terize the single Green’s functions by ω ∈ R, θ ∈ [0, 2π],

G0(ω, θ) ≡ (ωeiθ − Ĥ0)−1, (5)
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Non-Hermitian Boundary Modes

Case sGF dGF Gap Manifestation
I θ = 0, π Yes Any Traditional Bulk-Boundary
II θ 6= 0, π Yes Any Anomalous Skin Effect
III Singular Yes Point Trivial Skin Effect
IV N/A No Point Gapless

TABLE I. Possible correspondences of single vs. doubled
Green’s function zeros (sGF vs dGF) by Eq. (6), with
{θ = arg(ω), ω ∈ C}. Doubled Green’s functions defined
with respect to specified gap condition. For topologically non-
trivial bulk, topological edge modes are present in Cases I, II.
Edge modes in Case III are not topological. Case IV equiva-
lent to Hermitian gapless phase.

and define its complex conjugate, G†0(ω, -θ), parameter-
ized by -θ, see also Supplemental Material II.2. This is
subtle because G0 is only defined for ω ∈ R, and the ze-

ros of G0,G
†
0 are, in general, complex. However, we note

that ω2 = (ωeiθ)(ωe-iθ) for any θ ∈ [0, 2π] and, hence,
are free to choose θ as function of ω, defining a path in
the complex plane. We can then factor G0 (Supplemental
Material II.2) as

G0 =

(
0 G†0

G0 0

)[
1− ω

(
0 G†0

G0 0

)(
-1 eiθ

e-iθ -1

)]−1
.(6)

We choose θ(ω) such that our path intersects the zeros,
ω∗, θ∗ of G0. To sum up, the doubled band gap is
defined by the radial distance, ω, between bands as
shown in Fig. 1, and “in-gap” zeros of the doubled
Green’s function correspond to “in-gap” zeros of the
single non-Hermitian Green’s functions.

Non-Hermitian Boundary Modes - Projecting the
Green’s functions to an edge, we come to a main result,
the exhaustive determination of the possible boundary
modes in non-Hermitian systems, Table I. Namely, We
consider the consequences of Eq. (6) for different gap
conditions.

First, in the presence of a line gap (Fig. 1 a), if the pro-
jected doubled Green’s function, G0(ω,k‖, r⊥ = 0), has
in-gap zeros, we distinguish two topological cases. Either,
the projected single Green’s function, G0(ω,k‖, r⊥ = 0),
has zeros on the real axis, θ∗ = 0, π (I), or in the com-
plex plane, θ∗ 6= 0, π (II). Case I corresponds to tra-
ditional bulk boundary correspondence – a topologically
non-trivial phase hosts topological edge modes reflecting
the bulk topological degeneracy. Case II we refer to as
the Anomalous Skin Effect – a topologically non-trivial
phase hosts topological edge modes with complex con-
jugate energies, a growing and a decaying mode. Since
band topology is defined by the doubled Hamiltonian,
cases I and II are not topologically distinct and general-
ize the notion of bulk boundary correspondence.

Next, consider a single band point gap (Fig. 1b). Edges
cut the band and project along corresponding momenta,
with two possible outcomes. The point gap is either pre-
served, or the bands are “flattened” – contractible to a

point – and the point gap topology trivialized, see also
Supplemental Material III.1). By contrast, the doubled
Green’s function topology is defined over the (real) dou-
bled gap before projection (Fig. 1b) in both cases. If the
point gap survives, the single projected Green’s function
is non-singular. Hence, non-trivial bulk point gap topol-
ogy has corresponding boundary modes by Eq. (6), case I
and II. Alternatively, if bands are flattened, the projected
spectrum is gapless and the single projected Green’s func-
tion is singular. A bulk point gap invariant does not have
corresponding topological edge modes. Instead, we ob-
serve a Trivial Skin Effect (case III) – topologically trivial
localization of bulk modes at the edge. Heuristically, if an
edge destroys the entire bulk topology, it must carry all
bulk topological information and hence localize all bulk
modes, see also Supplemental Material III.1.

Now, consider a topologically trivial line gap topology,
an absence of in-gap zeros for the doubled Green’s func-
tion. Bands in the complex plane generically form closed
loops and thus, also have point gaps, e.g. band centers
in Fig. 1a. The point gap topology is always trivial with
respect to the line gap. However, if the point gap in-
variant is intrinsically non-trivial and an edge flattens
the bands, a trivial skin effect (III) is generated as be-
fore. Skin modes are not topological and have energies
away from the line gap, lying in the bands, but can be
detected by computing the double Green’s function of a
single band with respect to its center. Since a band may
have both a point gap and line gap invariant, the triv-
ial skin effect may coexist with topological edge-localized
modes (I,II). Note that for line gaps, ω = 0 modes are
special in that they are always in-gap and energetically
separated from the trivial skin modes [20].

Finally, consider a band gap such as in Fig. 1c. Here
the doubled Green’s function is directly sensitive to both
the band and point gap topology, and the zero crossings
are, by definition, separated in energy (Fig. 1c). If the
point gap is trivialized, we observe a trivial skin effect,
otherwise, we see topological edge modes corresponding
to the point gap topology. On top of these modes, the
topological edge modes corresponding to the band gap
topology can be detected via the same correspondence
in Eq. 6, and Table I holds, as above.

The Role of Symmetry - Since cases I and II are not
topologically distinct within the doubled Hamiltonian
classification, traditional bulk-boundary correspondence
must be a symmetry protected property. Instead, Eq.
(6) provides a purely topological generalization of bulk
boundary correspondence, unifying cases I and II, pro-
tected by the existence of a gap, see also Supplemental
Material II.2. In this sense, traditional bulk-boundary
correspondence is a special case (choosing the real axis)
of the anomalous skin effect. In fact, the spectrum
can be continuously rotated in Fig. 1c, tuning between
cases I and II. Furthermore, while a point gap does not
protect bulk boundary correspondence, bulk vs. edge
symmetries still determine the emergence of the trivial
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skin effect. This suggests a possible classification, via
the above formalism, of non-Hermitian SPTs [1, 3, 4]
by their preservation of traditional bulk-boundary cor-
respondence and/or by the absence of a trivial skin effect.

Distinguishing Topological Invariants - Characteriz-
ing system edge modes, the formalism makes it possible
probe non-Hermitian band topology directly. For exam-
ple, consider Z and Z2 topological invariants. The edge
dispersion parity under time-reversal symmetry (TRS)
immediately distinguishes them. This distinction is crit-
ical in non-Hermitian systems, where topological invari-
ants depend on gap conditions. The doubled Hamilto-
nian is sensitive to gap conditions [1, 3, 4], and, by ex-
tension, the doubled Green’s function detects “in-gap”
edge localized modes for any gap topology, see Supple-
mental Material II.1. In fact, in the example below, we
identify a purely non-Hermitian topological phase transi-
tion, where line gap separated bands are tuned to a point
gap, without altering Hamiltonian symmetries, Fig. 3.

Examples - We illustrate the value of our universal
framework in the context of the non-Hermitian Chern
Insulator. We also checked that our formalism works for
edges of arbitrary co-dimensions, see also [37], and for the
well studied non-Hermitian version of the Su-Schriefffer-
Heeger (SSH) model [45], see Supplemental Material V.

Specifically, we consider the Hamiltonian,

H = ξ σ + ihσ, (7)

where σ = (σx, σy, σz), h = (hx, hy, hz) indicates the
strength of the non-Hermitian field, and ξ = (cos kx +
cos ky −m,− sin kx, sin ky). We use the methods in [37]
to compute the single and doubled Green’s functions ze-
ros for this model, see Supplemental Material IV.1.

In general, the dispersion relation can be read off from
the Green’s function zeros. Here, projecting the Hamil-
tonian to the edge x̂ = 0, reduces it to the non-Hermitian
SSH model, ξ = (m−cos(ky), 0, sin(ky)). Hence, the edge
dispersion is simply given by±[sin(ky)+ihz] (Supplemen-
tal Material IV.1) and is real for hz = 0 by a combina-
tion of transposition and chiral symmetry [2, 20, 46], see
Supplemental Material V. Therefore, we observe a gen-
eralized bulk-boundary correspondence, case I for hz = 0
and case II for hz 6= 0, see Fig. 2.

Given the chiral symmetry of this 2D model, we com-
pute the Chern number via Green’s function zeros, see
Supplemental Material IV.3. While the line gap is well
defined, counting single Green’s Function zeros suffices;
two (no) zeros between bands imply C1 = ±1 (0), see
Fig. 3 and Supplemental Material IV.3. And, the dis-
persion is odd under TRS (Fig. 2 b), consistent with a
Z invariant. This computation is analytically tractable
for simple models. The topological transition between
phases is marked by a gap-less region, and, as seen by
[20], there exists a regime in which the Bloch Chern
number is not defined, m∗ ± |h|. Here, the bands are
“inseparable” [15] in the complex plane. This regime is

characterized by a point gap invariant.

We examine the topology of the single remaining band
via the doubled Green’s function. Applying the same
zero counting argument as above, we see a new uniquely
non-Hermitian transition, Fig. 3. For hy = hz = 0, the
Hermitian m = 2 phase transition is slightly modified.
However, when hy 6= 0 or hz 6= 0, we see two zeros
appear instead of four. We also notice that the doubled
dispersion relation in this regime becomes time-reversal
symmetric, indicating the bands are indexed by a
Z2 invariant instead of a Z invariant. Note, TRS in
non-Hermitian systems corresponds to k → −k and
transposition. Hence, the spectrum is still odd with
respect to k, but left and right modes are swapped,
implying TRS.

This transition is thoroughly understood via all
relevant symmetries in Supplemental Material IV.2.
Here, we report the point gap classification of the model
in the particular cases of generic h and the special cases
hz = hx = 0, hz = hy = 0, and hx = hy = 0. The point
gap classification predicts a Z2 invariant for generic h, a
Z2
2 for only hy 6= 0 or hz 6= 0, and a trivial phase for only

hx 6= 0 [1, 4]. By contrast, the line gap classification is
Z for small perturbations in all cases [1, 4, 34, 47]. As
we increase |h|, the line gap (Fig. 1a) closes and forms
a point gap (Fig. 1b). While existing methods were
unable to provide a direct computation of the topological
invariant in this regime [20, 48], our formalism, counting
zeros, is sensitive to these transitions, see Fig. 3. In fact,
comparing our classification of the point gap regime to
previous work on the non-Hermitian skin effect for this
model, [2, 20], we find trivial skin modes emerge for
the same conditions as predicted by the edge-induced
trivialization of non-trivial point gap topology, hy 6= 0.

Discussion and Conclusion - We presented a universal
framework to determine boundary modes in non-
Hermitian systems with two major outcomes, see Table
I. The first is a generalization of bulk-boundary corre-
spondence to non-Hermitian systems in the presence of
a band gap. We distinguish two types of topological
edge modes, those obeying traditional bulk-boundary
correspondence (I) and the anomalous skin effect (II),
demonstrating traditional bulk-boundary correspon-
dence to be a symmetry constraint on the spectrum.
This is accomplished via a complete characterization of
topological edge modes and their dispersion relations,
allowing us to detect and distinguish different topological
bulk invariants.

Second, our framework detects a uniquely non-
Hermitian phase transition under the closing of a line
gap (Fig. 1 a) into a point gap (Fig. 1 b). As presented
in Table I, non-trivial point gap topology does not
guarantee bulk-boundary correspondence. In particular
an edge may either trivialize or preserve the bulk point
gap invariant. We explain the trivial non-Hermitian skin
effect as this trivialization (case III), a break down of
bulk boundary correspondence. And, we detect topo-
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Non-Hermitian Chern Insulator Boundary Modes

a. b.

FIG. 2. Bulk boundary correspondences in non-Hermitian Chern Insulator. Panel a. Top (Bottom) row corresponds to
single (doubled) Green’s function. System exhibits both types of topological boundary modes: Case I, left column, e.g.
m = 0.4, ky = 0, hx = hy = 0.1, hz = 0, and Case II, right column, e.g. m = 0.4, ky = 0, hx = hy = 0, hz = 0.1. Panel b. Edge
state dispersion (hz = 0,m = 0.6, edge along ŷ-axis). For every in-plane momentum k‖, each ky above, we solve for boundary
mode energy, defining a dispersion relation.

Non-Hermitian Chern Insulator Phase Diagram

ℤ

ℤ2
2

ℤ 00

hx,hy or hx,hzhy or hzhx

ℤ

ℤ2

0

FIG. 3. Phases of non-Hermitian Chern insulator. Non-zero components of non-Hermitian field, h, are indicated in figure
panels. Transition between 4 and 2 zeros signals line to point gap transition, topological invariants labeled. Note, absence of
non-trivial point gap when only hx 6= 0. Components of h chosen to be anisotropic. Shown are representative cases for given
topological invariants

logical edge modes associated with a bulk point gap in
the latter case (I,II). Thus, our framework makes novel
non-Hermitian phase transitions physically accessible.
This suggests the extended SPT classification [1, 4] is
relevant beyond fine tuning and indicates the existence of
physically accessible intermediate topological phases in
generic open systems. We illustrated this by computing
the phase diagram of the non-Hermitian Chern insulator
under open boundary conditions, Fig. 3, for a gapless
parameter regime inaccessible to previous methods [20].
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I. SUPPLEMENTAL MATERIAL:
TOPOLOGICAL SIGNIFICANCE OF GREEN’S

FUNCTION ZEROS

We illustrate the topological significance of Green’s
function zeros by computing the Chern number. Ex-
pressed in terms of Green’s functions,

Cα = Nα ε
µ,ν,...

∫
ddk dω Tr

[
G∂µG−1G∂νG−1 . . .

]
(8)

where α identifies the Chern number, Nd some quan-
tized constant, d the dimension, and µ, ν = 0, 1, . . . d.
The Chern number, Cα, is robust under small variations
δG which keep G−1 finite and is hence a topological in-
variant [43, 49]. A band Chern number only changes by
crossing a Green’s function zero, corresponding to a pole
in integrand of Eq. 8 (order of zero determines change in
Cα). This can be generalized to any topological invariant
[50, 51]. Then, by bulk-boundary correspondence, when
applicable, in-gap zeros of the edge localized Green’s
function must correspond to the bulk Green’s function
zeros, and by extension also track the band Chern num-
bers.

We compute the topological invariant of a Hermitian
system by counting the inter-band zero crossings, along
with the order of the zero, zm, and remembering that
the total bulk invariant for all bands must sum to zero,∑
Ci = 0 and Ci+1 −Ci =

∑
m zm. In the non-Hermitian

case, we use the doubled Hamiltonian to compute the
band topology and then define the net topological in-
variant of each single sub-block. Hence, even for open
systems, we determine the band topological invariants.

II. SUPPLEMENTAL MATERIAL: IN-GAP
BOUND STATE TOPOLOGY

We elaborate on the central result in the main text.
As discussed above, any definition of a band gap in the
complex plane is inherently ambiguous. We circumvent
this concern via the construction of a real gap defined by
the doubled Hamiltonian formalism [1, 3, 4].

II.1. Doubled from Single Band gap

By construction, the doubled gap center will be E = 0,
with one set of eigenvalues (without loss of generality,

Ĥ) above E = 0 and the other (Ĥ
†
) below. In this way,

the topology of a single band encircling a point is also
well defined [1, 41]. In this work we focus on in-gap
bound states between two bands and their behavior as
bands become inseparable.

Consider first the two bands in Fig. 1a. The topology
of either band is defined with respect to crossing the
line E(x) = 0 + ix, and the doubled Hamiltonian will

consist of four bands, two above (Ĥ) and two (Ĥ
†
) below

the gap. Their positions on the real axis is given by the
magnitude of their energies. The topology of each band
is defined with respect to its counterpart below E = 0
[1].

Next, we look at the inseparable [15] bands in Fig. 1b.
The topology of the single band need not be trivial
[41]. Here the doubled system consists of two bands
one above E = 0 and the other below. This occurs in
our example, the non-Hermitian Chern insulator, for
intermediate non-Hermiticity. In the doubled system
we see clear topological edge modes corresponding to a
non-trivial point gap invariant.

Finally, we turn to the bands in Fig. 1c. The topology
of either band is defined with respect to the point gap
it encircles and the band gap between the two bands.
The doubled gap will correspond to the magnitude of
the band energies, with two bands above E = 0 and two
below. To detect a topological invariant with respect
to the band gap, we consider the Green’s function
zeros at energies between the two bands. By contrast,
to detect the point gap we consider energies across E = 0.

II.2. Doubled - Single Green’s Function
Correspondence

We define in-gap bound states with respect to the dou-
bled gap and connect them with single system bound
states. In particular, we take advantage of the dou-
bled Hamiltonian Hermiticity to define a doubled Green’s
function whose zeros have topological significance, and
map them to corresponding zeros in the individual non-
Hermitian systems.

We begin with Eq. (4),

G(ω) =
G0(ω

1− V̂G0(ω)
, with G0(ω) =

1

ω − Ĥ0

.

By the Hermiticity of G, topological boundary modes
correspond to zeros of G0. Then, defining undoubled
(non-Hermitian) Green’s functions for ω ∈ R and θ ∈
[0, 2π], we relate the zeros of G0 to those of G0,G

†
0,

G0(ω, θ) ≡ (ωeiθ − Ĥ0)−1, G†0(ω, -θ) ≡ (ωe-iθ − Ĥ
†
0)−1.

Note that G0 is only defined for ω ∈ R, but the zeros

of G0,G
†
0 are, in general, complex. However, using that

ω2 = (ωeiθ)(ωe-iθ) for any θ ∈ [0, 2π], we attempt to
factor out single Green’s functions. We will always work
at distance δ > 0 from any singlular points and then
take δ → 0. This will not always be possible, as in the
case of inseparable bands (Fig. 1b), where projection to
an edge may render G0 singular everywhere in-gap. In
such cases, this factorization does not hold, see discussion
below. Returning to our factorization,
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G0(ω) =

[
ω

((
1 0
0 1

)
−
(

0 eiθ

e-iθ 0

)
+

(
0 eiθ

e-iθ 0

))
−

(
0 Ĥ0

Ĥ
†
0 0

)]−1
=

[
ω

(
1 -eiθ

-e-iθ 1

)
+

(
0 eiθω − Ĥ0

e-iθω − Ĥ
†
0 0

)]−1

=

(
0 eiθω − Ĥ0

e-iθω − Ĥ
†
0 0

)−1 ω( 0 eiθω − Ĥ0

e-iθω − Ĥ
†
0 0

)−1(
1 -eiθ

-e-iθ 1

)
+ 1

−1 . (9)

Taking advantage of inverse properties of block off-diagonal matrices:(
0 A
B 0

)−1
=

(
0 B−1

A−1 0

)
, (10)

we obtain

G0(ω) =

(
0 (e-iθω − Ĥ

†
0)−1

(eiθω − Ĥ0)−1 0

)[
ω

(
0 (e-iθω − Ĥ

†
0)−1

(eiθω − Ĥ0)−1 0

)(
1 -eiθ

-e-iθ 1

)
+ 1

]−1
. (11)

Substituting the previously defined single Green’s functions in Eq. (9) into Eq. (11) yields

G0(ω) =

(
0 G†0(ω, θ)

G0(ω, -θ) 0

)[
1 + ω

(
0 G†0(ω, -θ)

G0(ω, θ) 0

)(
1 -eiθ

-e-iθ 1

)]−1
. (12)

In Eq. (12) above, we write G0(ω, θ) to indicate the domain change into the complex plane, with ω ∈ R, sθ ∈ [0, 2π].

We are free to take any choice θ in Eq. (12). So, for each ω∗ ∈ R defined by G0(ω∗, θ∗) = G†0(ω∗, -θ∗) = 0, we take
θ(ω∗) = θ∗, arbitrarily choosing the smallest θ∗ in case of degeneracy. Otherwise, we arbitrarily choose θ = 0. This
defines a path in ω for θ,

θ : R→ [0, 2π]

∣∣∣∣∣ θ(ω) =

{
θ∗, if, ∃θ∗ ∈ [0, 2π], such that G0(ω, θ∗) = 0

0, otherwise
, ω ∈ R. (13)

Therefore, as ω → ω∗, G0(ω) → 0. We remark that if for any ω∗ ∈ R, there exists a θ∗ ∈ [0, 2π] such that
G0(ω, θ) = 0, then G0(ω∗) has a zero eigenvalue. Zeros are a special factorization in this sense. By contrast, if θ = θnz
where G0(ω∗, θnz) 6= 0, this guarantees the first term in Eq. (12) is not singular, and we can recombine G0 back into
the form of Eq. (4), which by the θ∗ factorization above must have a zero eigenvalue. Note, in the case of degenerate
zeros, either factorization guarantees a zero of G0. In this way, we construct a correspondence between the zeros of
the single Green’s function and the doubled Green’s function. Here all topological features are defined by the doubled
Green’s function zeros and through this correspondence are inherited by the single Green’s function zeros.

We stress the importance of the band gap. At all times our procedure requires a gap to be well defined in the
complex plane. This is particularly important in the case of a point gap, Fig. 1b, where the doubled Green’s function

gap is defined between two bands (Ĥ and Ĥ
†
). A single band may carry a non-trivial topological invariant [1], but

the edge projection may collapse the point gap. In such cases the single band Green’s function is trivially zero in
the absence of a gap. Instead, the doubled Green’s function has “in-gap solutions” corresponding to region between

the Ĥ, Ĥ
†

bands. The single band system does not have a corresponding topological bound state and is singular
everywhere. This is precisely case III of Table I, the trivial skin effect.

III. SUPPLEMENTAL MATERIAL:
GENERALIZED BULK-BOUNDARY

CORRESPONDENCE

The primary content of this work is presented in Table
I. The formalism developed in this work generalizes the
notion of bulk-boundary correspondence to generic non-
Hermitian systems. This generalization has some techni-
cal caveats discussed here.

First, the doubled Green’s function has a well defined
real gap between a single band and its complex conju-

gate, see II.1. Bound states of the doubled system are
well defined, but this does not, in general, translate into
a bulk-boundary correspondence for a single topological
band. In that sense, non-Hermitian systems may carry
bulk topological invariants for which bulk-boundary cor-
respondence is broken. However, in the presence of a well
defined band gap, Fig. 1a and c, our work restores a gen-
eralized form of bulk-boundary correspondence, cases I
and II. We discuss point gaps in section III.1.

While there exists a well defined band gap, the single
Green’s function is non-singular almost everywhere and



9

inverses are well defined. By Eq. (6) we can always re-
late the zeros of the single and doubled Green’s functions.
The in-gap zeros of the single Green’s function corre-
spond to bound states of the system, but non-Hermitian
Green’s function zeros are not universal due to the lo-
calization of bulk modes to an open boundary, the non-
Hermitian skin effect [20, 23], see III.1. However, through
this correspondence, we can identify edge localized modes
that correspond to in-gap zeros of the doubled Green’s
function. In previous literature, when the single Green’s
function zeros are constrained to the real energy axis
[2, 25], the system was said to preserve bulk-boundary
correspondence. In particular, the edge mode is present
on both edges of the system, and the zero-energy mode
is protected by the doubled gap from non-universal zeros
[20]. However, our formalism distinguishes topological
complex energy edge states from trivial ones. These may
not be separated in energy substantially from the non-
universal bound states, but are nonetheless topological.
We distinguish these modes from the non-Hermitian skin
effect as the anomalous skin effect, case II in Table I.
Therefore in the presence of a band gap, non-trivial band
topology is protected, and we can always define an in-gap
edge mode reflecting the bulk topological degeneracy. In
this sense, we generalize the notion of bulk-boundary cor-
respondence to non-Hermitian systems. Symmetry con-
straints can restore traditional bulk-boundary correspon-
dence, but the topological property exists beyond the
symmetries of the model. This is intimately tied to the
segmentation of the complex plane by both a line and
a band gap as illustrated in Fig. 1. This gives a direct
geometric interpretation to our exhaustive classification
of bulk boundary correspondences in non-Hermitian sys-
tems.

III.1. Point Gap and Beyond Bulk Boundary
Correspondence

We discuss case III in Table I. As mentioned above,
point gap topology ascribes a net non-trivial bulk topol-
ogy, e.g. a net winding of the band. In the absence of
a line or band gap protecting the bulk topology, non-
Hermitian bands can still exhibit a point gap topologi-
cal invariant associated with the structure of the band
on the complex plane. Non-Hermitian energy bands are
closed loops which generically enclose non-zero area in
the complex plane, e.g. E = teik for a 1-D one way hop-

ping model, Ĥ =
∑
x tĉ
†
x+1ĉx. However, unlike line or

band gaps, point gaps do not generically protect the bulk
topological invariant in the presence of an edge. In par-
ticular, an edge projects the bulk Hamiltonian. Heuris-
tically, closed loops may be cut and projected into lines
or points, making them trivially contractible to a point.
Such an edge non-locally trivializes the point gap invari-
ant of the entire bulk. Hence, all bulk information must
be localized at that edge, resulting in a localization of all
bulk modes at the edge. For example, if the band had

net winding, broken by a right and left edge, all bulk
modes can only move from one edge to the other, lo-
calizing them at the terminating edge. In fact, for the
the one-way hopping model, we see precisely this phe-
nomenon, manifested as an N-th order exceptional point
– the N dimensional system has rank 1, meaning every
state is localized to one site [19, 24]. This is what we
refer to as the trivial non-Hermitian skin effect, trivial
because localized modes do not reflect the bulk topolog-
ical invariant.

For example, the non-Hermitian Chern insulator when
projected to the edge, x = 0, is equivalent to the non-
Hermitian SSH model. The bulk point gap invariant is
equivalent for hz 6= 0 or hy 6= 0 (see Supplemental Ma-
terial IV.2), but the edge spectrum for hy 6= 0 is pseudo-
Hermitian, which implies either purely real or purely
imaginary Eigenvalues. Hence, the bands are flattened
to lines in the complex plane and point gap topology
disappears. By contrast, if hz 6= 0, the projected Hamil-
tonian does not flatten the bands in the complex plane.
They form a point gap, and the topology is not trivial-
ized. Thus, for hy 6= 0 we see the trivial non-Hermitian
skin effect. By contrast, for hz 6= 0, we see no localiza-
tion of bulk edge modes as the bulk point gap topology
is not trivialized by the edge. In fact, we see topological
(anomalous skin) edge modes persisting in this regime
despite the gapless bulk [2], corresponding to the point
gap topology of the bulk, Supplemental Material IV.2.

IV. SUPPLEMENTAL MATERIAL:
NON-HERMITIAN CHERN INSULATOR

We elaborate some computational details. In particu-
lar, we obtain the restricted single Green’s function ana-
lytically by the same technique used in [37]. The appear-
ance and disappearance of the restricted Green’s function
zeros are then used to determine the Chern number and
other properties of the non-Hermitian Chern insulator.

IV.1. Green’s Function Poles

In this section show the analytic results on the non-
Hermitian Chern insulator Green’s function zeros that
aided numerical results. We consider the Hamiltonian of
form:

H = ξ σ + η σ + ihσ, (14)

with

ξ = (cos kx,− sin kx, 0), (15)

η = (cos ky −m, 0, sin ky), (16)

h = (hx, hy, hz), (17)
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Note we choose this notation in this section to maximize
carry-over between the non-Hermitian Chern insulator
and the SSH model, but combine the Hermitian terms
ξ + η → ξ in the remainder of the text.

We now construct the Green’s function

G(ω,k) =
1

ω −H
=

ω +H
ω2 −H2

. (18)

We explicitly calculate the denominator

H2 = (ξ σ + η σ + ihσ)2

= Ω2 + 2 cos kx(ηx + ihx)− 2 sin kx(ηy + ihy), (19)

where

Ω2 = 1 + η2 − h2 + 2iη h. (20)

We substitute t ≡ eikx , such that cos kx = (t + 1/t)/2
and sin kx = (t− 1/t)/2i. Thus,

H2 = Ω2 + (α+ iβ)t+ (α∗ + i β∗)t−1, (21)

where we have introduced the following quantities:

α = ηx + iηy, (22)

β = hx + ihy, (23)

We Fourier transform and restrict r⊥ = 0,

G(ω, ky, r⊥ = 0) =

+π∫
−π

dkx
2π

ω +H
ω2 −H2

, (24)

Taking t = eikx , we obtain the following countour integral
around the unit circle:

G(ω, ky, r⊥ = 0) =

∮
S

dt

2πi

ω +H
t(ω2 −H2)

, (25)

Using Eq. (21), we can write

G(ω, ky,r⊥ = 0) =

= − 1

(α+ iβ)

∮
dt

2πi

ω +H
t2 − 2f(ω)t+ c

where

f(ω) =
ω2 − Ω2

2(α+ iβ)
, c =

α∗ + iβ∗

α+ iβ
, (26)

Considering the integrand,

Z(t, ω) = t2 − 2f(ω)t+ c = 0, (27)

We find the roots,

t1,2 = f(ω)± γ(ω), with γ(ω) =
√
f2(ω)− c.

To calculate the Green’s function we only have to evalu-
ate the following three contour integrals:

I0 =

∮
S

dt

2πi

1

Z(t, ω)
, (28)

I1 =

∮
S

dt

2πi

t

Z(t, ω)
, (29)

I2 =

∮
S

dt

2πi

1

t Z(t, ω)
, (30)

We rewrite the Green’s function,

G(ω, ky,r⊥ = 0) = − 1

(α+ iβ)
G′(ω, ky),

with

G′(ω, ky) = I0(ω σ0 + η σ + ihσ)

+
I1
2

(σx + iσy) +
I2
2

(σx − iσy), (31)

We use Cauchy’s theorem to evaluate the contour inte-
grals, which have in general up to 2 (3 for I2) poles.
There are several distinct cases:

IV.1.1. Both poles outside

In the case when both poles t1,2 = f(ω) ± γ(ω) are
outside the unit circle, there are no residues inside the
unit circle and we have

I0 = 0, I1 = 0. (32)

However, the remaining integral is non-vanishing because
it has a single pole at t = 0.

I2 =

∮
dt

2πi

1

t Z(t)
= Res

t=0

1

t Z(t)
=

1

c
. (33)

Thus, according to (31), in this case the Green’s function
has form

G′(ω, ky) =
I2
2

(σx − iσy) =
1

c

(
0 0
1 0

)
,

and its eigenvalues are zero everywhere in the gap, i.e.
the bands are touching.

IV.1.2. Both poles inside

In case when we have both poles inside the unit circle
|t| < 1 we have I0 vanishing as both residues exactly
cancel each other:

I0 =

∮
dt

2πi

1

Z(t, ω)
= Res

t=t1

1

Z(t, ω)
+Res
t=t2

1

Z(t, ω)
=

=
1

t1 − t2
+

1

t2 − t1
= 0. (34)
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The I1 integral is however finite:

I1 =

∮
dt

2πi

t

Z(t, ω)
= Res

t=t1

t

Z(t, ω)
+Res
t=t2

t

Z(t, ω)
=

=
t1

t1 − t2
+

t2
t2 − t1

=
t1 − t2
t1 − t2

= 1. (35)

The last integral is however zero:

I2 =

∮
dt

2πi

1

tZ(t, ω)

= Res
t=t1

1

tZ(t, ω)
+Res
t=t2

1

tZ(t, ω)
+Res

t=0

1

tZ(t, ω)

=
1

t1(t1 − t2)
+

1

t2(t2 − t1)
+

1

t1t2

=
t2 − t1 + t1 − t2
t1t2(t1 − t2)

= 0. (36)

Therefore, the Green’s function reads:

G′(ω, ky) =
I1
2

(σx + iσy) =

(
0 1
0 0

)
,

and its eigenvalues are also zero in this case, correspond-
ing to the gapless case again.

IV.1.3. Both poles on the circle

In case when both poles are on circle, poles cancel each
other again, and the system is gapless.

IV.1.4. First only inside

We now consider that only the first pole t1 = f(ω) +
γ(ω) to be inside the unit circle. In this case have:

I0 =

∮
dt

2πi

1

Z(t, ω)
= Res

t=t1

1

Z(t, ω)
=

1

2 γ(ω)
,

I1 =

∮
dt

2πi

t

Z(t, ω)
= Res

t=t1

t

Z(t, ω)
=
f(ω) + γ(ω)

2 γ(ω)

=
t1

2γ(ω)
,

I2 =

∮
dt

2πi

1

tZ(t, ω)
= Res

t=t1

t

Z(t, ω)
=

1

2 γ(ω) (f(ω)− γ(ω))

=
1

2γ(ω)t2
.

Thus the Green’s function reads:

G′(ω, ky) = I0(ω σ0 + η σ + ihσ)

+
I1
2

(σx + iσy) +
I2
2

(σx − iσy),

=
1

2 γ(ω)

(
ω + δ α∗ + iβ∗

α+ iβ ω − δ

)
+

t1
2 γ(ω)

(
0 1
0 0

)
+

1

2 γ(ω)t2

(
0 0
1 0

)
=

1

2 γ(ω)

(
ω + δ α∗ + iβ∗ + t1

α+ iβ + 1
t2

ω − δ

)
.

with δ = ηz + ihz.

IV.1.5. Second only inside

We consider now that only the second pole t1 = f(ω)−
γ(ω) is placed inside the unit circle. In this case have:

I0 =

∮
dt

2πi

1

Z(t, ω)
= Res

t=t2

1

Z(t, ω)
= − 1

2 γ(ω)
.

I1 =

∮
dt

2πi

t

Z(t, ω)
= Res

t=t2

t

Z(t, ω)
= −f(ω)− γ(ω)

2 γ(ω)

= − t2
2γ(ω)

.

I2 =

∮
dt

2πi

1

tZ(t, ω)
= Res

t=t2

t

Z(t, ω)

= − 1

2 γ(ω) (f(ω)− γ(ω))
= − 1

2γ(ω)t1
.

Thus the Green’s function in this case reads:

G′(ω, ky) = I0(ω σ0 + η σ + ihσ)

+
I1
2

(σx + iσy) +
I2
2

(σx − iσy),

= − 1

2 γ(ω)

(
ω + δ α∗ + iβ∗

α+ iβ ω − δ

)
− t2

2 γ(ω)

(
0 1
0 0

)
− 1

2 γ(ω)t1

(
0 0
1 0

)
= − 1

2 γ(ω)

(
ω + δ α∗ + iβ∗ + t2

α+ iβ + 1
t1

ω − δ

)
.

We see that the structure of the Green’s function is sim-
ilar to the previous case.

IV.1.6. Eigenvalues of the Green’s functions

To properly account for which pole is within the unit
circle in numerics, we introduce quantity

s(ω) = sign (1− |t1(ω)|) , (37)
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then if one of the poles

T1,2 = f(ω)± s(ω)γ(ω), (38)

is inside, we automatically guarantee it is T1 which is
always inside. Then the Green’s function is given by

G′(ω, ky) =
s(ω)

2 γ(ω)

(
ω + δ α∗ + iβ∗ + T1(ω)

α+ iβ + 1
T2(ω)

ω − δ

)
.

(39)

The zero eigenvalues of this Green’s function is given by
detG(ω, ky) = 0, and yields

ω2 − δ2 = (α+ iβ)(α∗ + iβ∗) + (α+ iβ)T1(ω)

+
(α∗ + iβ∗)

T2(ω)
+
T1(ω)

T2(ω)
. (40)

We simplify this expression by noticing that

ω2 − Ω2 − (α+ iβ)T − (α∗ + i β∗)
1

T
= 0, (41)

Therefore,

(α∗ + iβ∗)

T2(ω)
= ω2 − Ω2 − (α+ iβ)T2(ω). (42)

Then, taking now into account that

T1(ω)

T2(ω)
=
f(ω) + s(ω)γ(ω)

f(ω)− s(ω)γ(ω)

=
1

c
[f(ω) + s(ω)γ(ω)]

2
,

and

T1(ω)− T2(ω) = 2s(ω)γ(ω), (43)

we have

1

c
[f(ω) + s(ω)γ(ω)]

2
+ 2(α+ iβ)s(ω)γ(ω)

= Ω2 − δ2 − |α|2 + |β|2. (44)

By expanding and squaring this equation [to eliminate
sign function s(ω)], we get a polynomial (6th order) equa-
tion in ω, which can be solved numerically. In fact, the
formalism generically provides a dispersion relation for
the edge mode.

In the present case the dispersion is more simply com-
puted by considering the Chern Hamiltonian as set of
linked SSH Hamiltonians via projection onto the ŷ-axis,

Hp =
∑
x

(ĉ†ky,xĉky,x+1σ+ +H.c.)

+ [(m− cos(ky), 0, sin(ky)) + h] · σ ĉ†ky,xĉky,x.F inally

(45)

For hx, hy = 0, the existence of edge modes clearly cor-
responds to whether or not there exists a ky such that

m − 1 − cos ky = 0, i.e. 0 < m < 2. And the dispersion
relation is just the diagonal component of the projected
Hamiltonian,

±[sin ky + hz]. (46)

Finally, for hy 6= 0, the condition for edge modes is simply
m− hy − 1− cos ky = 0.

IV.2. Symmetries

Here we discuss the relevant symmetries of the non-
Hermitian Chern insulator as parameterized by Eq. (7)
of the main text for different non-Hermitian perturba-
tions, h, and compute the expected topological invariant
of each set of symmetries in the presence of a point gap
(see Fig. 1b). Since we are interested in the bulk topol-
ogy, we consider relevant symmetries. Inversion along
ky, kx are symmetries of the system if respected by the
non-Hermiticity. We use the conventions of [1] to define
symmetry actions on the Hamiltonian (chiral, P , pseudo-
Hermiticity, Q, Transposition symmetry, C, Conjugation
symmetry, K). Specifically,

Ĥ(k) = −PĤ(aPk)P−1,PP∗ = I, aP = ±1

Ĥ(k) = QĤ
†
(aQk)Q−1,QQ∗ = I, aQ = ±1

Ĥ(k) = εCCĤ
T

(aCk)C−1, CC∗ = ηCI, ηC , aC , εC = ±1

Ĥ(k) = KĤ
∗
(aKk)K−1,KK∗ = ηKI, ηK , aK = ±1.

The commutation relations between the symmetries are
also defined. For example, C = εPCPCPT . We can define
any such εµν in this way. Note, in [1, 4] authors always
choose an aK = aC = −1 for C and K, this only alters the
classification for dimensions greater than zero. We com-
pute topological invariants of the Hamiltonian given the
symmetries and their commutation relations via the dou-
bled Hamiltonian formalism. In particular, we construct
the Clifford algebra associated with our symmetry gen-
erators and compute the extension under an additional
generator corresponding to a mass term [52]. From the
extension problem, we compute the topological invariant
by taking the zeroth homotopy group as is done in Her-
mitian K-theory [1, 3, 4, 28–31, 33, 35–37, 39, 40]. We
enumerate the relevant cases:

1. hz = hy = 0, hx 6= 0: We have transposition sym-
metry under inversion, C ≡ Iy,

IyĤ
T

(k)Iy = Ĥ(−k).

We have chiral symmetry under

IyσzĤ(k)σzIy = −Ĥ(k).

Thus, we have εC = ηC = εPC = 1, class 10 of
[1], and a trivial point gap invariant, as the TRS
(k→ −k) trivializes the chiral symmetry [6].
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2. hz = hx = 0, hy 6= 0: We have conjugation sym-
metry,

IyĤ
∗
(k)Iy = Ĥ(−k),

and, transposition symmetry,

σxIyĤ
T

(k)Iyσx = Ĥ(k).

We have another transposition symmetry under
conjugation by σy,

σyĤ
T

(k)σy = −Ĥ(k).

We also have chiral symmetry,

IyσzĤ(k)σzIy = −Ĥ(k).

We compose K = Iy with C = Iyσx to generate a
Q = σx which inverts momentum, aQ = −1. Now,
we classify the system with the new symmetry,
εPQ = εPC = −1 = aC = aQ, εQC = εC = ηC = 1.
We are in class 28 of [1], but with the classifica-
tion π0(R2

0+d) = Z2
2 instead of π0(R0−d) because

aC = 1. Here π0(R2) is just the zeroth homotopy
group of R.

3. hz = 0, hx, hy 6= 0: We have transposition symme-
try under conjugation by C = σy,

σyĤ
T

(k)σy = −Ĥ(k).

Similarly, conjugation by σx and inversion, Iy, gen-
erates a transposition symmetry,

σxIyĤ
T

(k)Iyσx = Ĥ(k).

And, we still have the traditional chiral symmetry,

IyσzĤ(k)σzIy = −Ĥ(k).

If C = σy, then εC = ηC = εPC = −1, and if C =
Iyσx, then εC = ηC = 1, εPC = −1. These two sets
of signs are equivalent and present in [1], but with
momentum inverted. In this case the point gap
invariant is thus π0(R2

7+d) = Z2
2 for d = 2 (Class

12).

4. hz 6= 0, hx, hy = 0: This is equivalent to hy 6= 0,
hx = hz = 0 for this model. The only difference
arises when generating an impurity edge in the sys-
tem for which ky inversion symmetry breaks. C.f.
item 2.

5. hz, hx 6= 0, hy = 0: This is equivalent to item 3,
hx, hy 6= 0 and hz = 0 with respect to bulk symme-
tries. Again, there are differences in the presence
of an edge.

6. hz, hy 6= 0, hx = 0: We break chiral symmetry
here, and only preserve transposition symmetry via
conjugation by σy

σyĤ(k)Tσy = −Ĥ(k),

and conjugation symmetry by conjugation with σz

σzĤ(k)∗σz = −Ĥ(−k).

Composing the two and taking Q̃ = σx and rotating
Ĥ→ iĤ, we have ηQ = 1. Then, setting C = σy, we
have εC = ηC = εQC = −1, and aC = 1. The point
gap invariant is computed for d = 2, π0(R2) = Z2.

7. hz, hx, hy 6= 0: We break chiral symmetry, and only
preserve transposition symmetry via conjugation
by σy

σyĤ(k)Tσy = −Ĥ(k).

Although the symmetry has aC = 1 instead of in-
verting momentum, we simply go to Class 9 of Ta-
ble II in [1] and find the point gap invariant to be
generated by π0(R7+d) instead of π0(R7−d), giving
Z2 for d = 2.

The Bernard Le Claire classification of non-Hermitian
non-interacting SPTs is exhaustive [1, 3, 4] in the
absence of lattice symmetries. Hence, the doubled
Green’s function generically encodes all of the topologi-
cal information in the model. In particular, considering
the zeros of doubled Green’s function, as mentioned
above, guarantees a consistent classification of edge
modes and by extension the bulk invariant. With this
in mind, we turn to a simple two band model. The total
Chern number of all bands in such system is simply
zero, c1 + c2 = 0. Generalizing this to the doubled
Hamiltonian, c1 + c2 + c3 + c4 = 0 and ci− cj =

∑
m zm,

where zm are the orders of the zeros between bands i
and j. These fully determine the allowed topological
invariant.

IV.3. Phase Diagram

Before computing everything from the doubled Green’s
function which is analytically complicated, we compute
the simple case when the single Green’s function is well
defined. In particular, note that in the phase diagram,
panel b of Fig. 3, we observe a transition atm∗±hy, m∗ =
2. Fortunately, the integral expressions in Supplemental
Material IV.1 are simple for hx = hz = 0. We check
when only one pole is inside the unit circle of the re-
parameterization in IV.1, f(ω)±γ(ω) ∈ D, the unit disk.
For only hy 6= 0,

Ω2 = 2 + (m2 − h2y)− 2m cos(ky).
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For simplicity take ky = 0, then

f(0) =
−1− (1−m− hy)(1−m+ hy)

2(1−m− hy)

and

γ =
1− (m2 − h2y − 2m+ 1)

2(1−m− hy)

t1,2 =
(m− 1− hy)

(m2 − h2y − 2m+ 1)
,

(m2 − h2y − 2m+ 1)

(m− 1 + hy)
.

So, t1,2 = 1
m−1+hy

,m − 1 − hy. Taking hy = 0 re-

turns the same m =2 transition where the pole inside
moves outside the unit disk. We thus modify m∗ into
m± = 2 ± hy. This is completely consistent with the
doubled Green’s function, and with [20]. Note, this does
not violate our table. In this case, the single Green’s
functions are singular everywhere in the non-existent gap
(for all momenta), and the doubled Green’s function no
longer factors as in Eq. (6).

Now, returning to the doubled Green’s function, we
compute the transitions numerically, and check the clas-
sification in IV.2 above. We see complete agreement with
the symmetry classification, see Fig. 3.

V. SUPPLEMENTAL MATERIAL:
NON-HERMTIAN SSH MODEL

We consider our arguments in one dimension with the
well-studied non-Hermitian version of the Su-Schriefffer-
Heeger (SSH) model [45]. Specifically, we parameterize
the Hermitian SSH model as

H = ξ σ + η σ, (47)

with

ξ = (cos k,− sin k, 0), η = (m, 0, 0). (48)

We consider a non-Hermitian version of this Hamiltonian

H = ξ σ + η σ + ihσ, (49)

with h = (hx, hy, hz). Crucially, the model exhibits
both chiral and transposition symmetries (even pseudo-
Hermiticity in bulk for hx = hy = 0)[53]. Transposition
symmetry implies the existence of an unitary operator,

σx, relating Ĥ and Ĥ
T

, linking right and left Eigenvec-
tors of Ĥ [1–4]. And, chiral symmetry implies the ex-

istence of an unitary operator, σz, relating Ĥ to −Ĥ,
linking positive to negative Eigenvalues. In the presence
of an edge, inversion symmetry is broken, but the spec-
trum is still symmetric about both the real and imaginary
axes. For each energy, E, its counterparts −E,E∗,−E∗
are present. And, since there are only two edge modes,
E∗ = E are identified in the edge spectrum, restrict-
ing it to the real axis. Therefore, taking hz = 0 guar-
antees real edge modes. Taking hz 6= 0, while keeping

Non-Hermitian SSH Model Boundary Modes

FIG. 4. The non-Hermitian SSH model exhibits both types
of topological boundary modes. Case I (Left Column), full
bulk-boundary correspondence is established (e.g. m = 0.6,
hx = hy = 0.1, hz = 0). Case II (Right Column), anomalous
skin effect emerges (e.g. m = 0.6, hx = hy = 0, hz = 0.1).

hy = hx = 0 preserves the bulk invariant [4], but pushes
the edge modes into the complex plane. Hence, in the
topological regime, this simple model exhibits both case
I and case II, see Fig. 4.
We elaborate some computational details. In particular,

we obtain the restricted single Green’s function analyti-
cally by the same technique used in [37].
We begin by explicitly computing H2

H2 = (ξ σ + η σ + ihσ)2

= Ω2 + (α+ iβ)t+ (α∗ + iβ∗)
1

t
, (50)

where again Ω2 = m2 +1−h2 +2imhx and α = m, β =
hx + ihy,.
We now proceed to the Fourier transform and put r⊥ = 0,

G(ω, r = 0) = − 1

(α+ iβ)

∮
dt

2πi

ω +H
t2 − 2f(ω)t+ c

.

with

f(ω) =
ω2 − Ω2

2(α+ iβ)
, c =

α∗ + iβ∗

α+ iβ
. (51)

Thus, we have integral of the same form as in the previous
case. We can immediately write

G′(ω) =
s(ω)

2 γ(ω)

(
ω α∗ + iβ∗ + T1(ω)

α+ iβ + 1
T2(ω)

ω

)
.

(52)



15

with T1,2(ω) = f(ω) ± s(ω)γ(ω) where s(ω) =
sign (1− |t1(ω)|) and t1(ω) = f(ω)+γ(ω). Thus we need

only take the determinant of this function to have zeros
of the single Green’s function and by extension the in-gap
bound states.
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