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ABSTRACT

It is proposed that certain daughter traje-—
ctories arise as a consequence of a higher under—
lying O(n) symmetry, with n > 3. This suggestion
is motivated by the dual resonance model, where
sucha pattern arises naturally fromthe existence
of a critical space-time dimension. Thisis easily
confirmed in the model (and provides a simple
test for what is the critical dimension) by con-—

sidering the amplitudes for spinless particles.

The results of JcN phase shift analysis
are discussed to give a speculative phenomeno-—
logical estimate of +the appropriate higher

symmetry.
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In this article we discuss relations between coupling constants which
are implied by the existence of a larger symmetry than rotational invariance
and which have consequences for parent—daughter and daughter—daughter relative
widths at each mass level. If the simplest description of a set of states at
a given mass level is in terms of a single irreducible representation of O(n),
then when this is restricted to a three-dimensional space, it is reducible in
terms of O0(3) to give a family of daughters with definite relative ~coupling

strengths.

The motivation for suggesting such a property is coming from the dual
resonance models, and the phenomenological study of daughter strengths could
provide a useful input into the attempt to construct a better such model. We
therefore first describe exactly how the phenomenon occurs in the known dual
models of highest internal consistency, and then go on to the phenomenological
evidence. ‘The reader with no interest in dual models may skip all except the

last part.

We outline from an appropriate viewpoint the classification of physical
states (for the lowest excited levels) in the unit intercept Veneziano model.
Since partition numbers are essential to this discussion, let us introduce

immediately the symbols p(x) and Td(l\T) through

d T A\ 4 & d N
(‘3(:.)) = _ﬂ(l—x)] = NZ TN % (1)
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In the Fock space spanned by the Lorentz harmonic operator oscillators agf),

(n)

a’L T  the number of linearly independent states at the nth  1evel (N =
= - na;-an) is T4(N), an appreciable number of which, corresponding to
the coefficient of XN in Eﬂ(x)-pB(x)p(xzﬂ have negative norm (are ghosts)
in view of the negative metric. Virasoro ! conjectured that the gauge symmetry
of the unit intercept case is sufficient to ensure decoupling of all but posi~
tive norm states on mass shell, The number of non—-zero norm physical states

at the Nth 1level is given by TB(N)-TB(N—1>. Explicit expressions for a
smaller number, TQ(N), of linearly independent positive norm states have been

constructed in Ref. 2), and again in Ref. 3).

4)

demonstration of the property that if one considers the model in d=26 space—

The Virasoro proposal 1) has recently been ingeniously proved by a
time dimensions (1 time + 25 space) there is an upper limit T24(N) on the
number of non=zero norm physical states. Since either of the methods of

Refs. 2) and I are generalizable to construct Td—g(N) positive norm physical

4) that there are no nega—

states in d dimensions, it was immediately deduced
tive norm ghosts in the model for any d £ 26, 1in partiocular for the value of

d=141.
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Using the method of I in d=26 dimensions, one obtains therefore all
physical states as irreducible representations of 0(25). To establish notation
we recall how finitc)e dimensional irreducible representations of O(n) are found

5

in a tensor basis . One defines an rth rank tensor as one which transforms

under the n by n orthogonal matrix aij according to

/ _|_
i = Qi Qogg s Qg Tadade (2)

One can classify the tensor by an invariant indicial symmetry pattern, repre—
sented by a Young tableau with r Dboxes. For orthogonal transformations we

make invariant contractions, whereupon the Young tableau may be restricted to
those with no more than < = [n/2] rows, where [n/2] means the largest
integer contained in n/2. Taking the rows to have lengths )\1 > A o 2 e 2%,.

we may characterize the irreducible representation by the sequence of

numbers {)\ A )\ ...)\ } where 1=1)‘i=r. For 0(3), Y =1 and we
characterize by one number )\} which can be identified with the angular

momentum dJ. For 0(25) there are twelve parameters to characterize an irre—
ducible representation which we denote by {)\1 XZXB.... X12} .

We apply now the method of I to construct physical states for a general
d dimensional space-~time, as irreducible representations of 0(d=1). Starting
with the vacuum state 0> we build up the spurious and physical states at
each level N by using as raising operators the spatial part of the Virasoro

gauge operators

n-1\

fc 43R & d 4 S d

=) (3)

(> '\5“‘ (v)

dﬂ
with n=1,2,3,... and A-B = g A, B i The results are, for the physical

states at the first five levels

N=0 \O>

Young tableau .« or gooooo...g

= O.C_?"' lo> i= 2,34 ..., (4-0).

Young tableau D or {10000..0}
EVe have chosen the 1=axis as longitudinal for this massless s‘ta'te.]
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Young tableau [:D or i2000O... }

N=3 Ot ¢ m.!. | (|I+ ()'l' o+ 1+
(a,; ai’ (d“) )(g Ak S‘)‘k“; "'Slria') o>

Young tableau EED or gBOOOO...}
' 2, )
(e as — &) 1oy

Young tableau B or {11000...-%

N=4 af‘H— m+ Q(‘\(H a(.)-‘-
J
( it "‘*)(S a(n-\-a(\w ¥ g a(:+ 001 + g "’*a“’* +
- @3
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Young tableau [ | | | | or {40000 }
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Young tableau | or {21000...}
[ ( am a(m- (H (3>+> 343 (qm*r a(3)+> l>

Young tableau D: or {ZOOOO... }
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Young tableau =+« or %OOOOO...’)2

This classifies all states obtained for the first five levels, by the method
of I. For the lowest levels there is a remarkable absence of daughters in the
critical dimension, i.e., the exponential growth begins later. One can check,

5)

by using Young tableau dimensionality formulae , that for an arbitrary d
the number of components in each level from N=0 +to 4 sums up to Td-Q(N),
*

as expected .

The result of Ref. 4) implies that this set of physical states forms a
complete set, for d=26, on the mass shell, i.e., we can insert in a residue

at a pole OL = N +the completeness relation

z ‘)\"> < ,\N l = 1 (OY\ m™mass S\\Q‘\) (4)
xN

where the sum is over the T24(N) components of the 0(25) irreducible repre

sentations that we have classified. This completeness relation, Eq. (4), is
true in general only for d=26; to check this assertion, it is sufficient to

consider explicitly only the level N=2.

Because of the completeness of these states for d=26, when we return
to -the realistic case, Refs. 6) and 7), of d=4 space-time dimensions, by
setting 22 components of momentum zero in the d=26 model 4) (i.e., by
restricting the representation space to a three-dimensional one), physical
states of different spin, according to 0(3), have coupling constants related
by the underlying 0(25) invariance. Where the dimension d enters the
contraction coefficients, this will lead to a new (daughter) irreducible repre- -
sentation of 0(3). For example, the {20000....} restricted representation
of 0(25) at N=2 Dbecomes a sum of f23 and fC); irreducible representations
of 0(3) with prescribed relative couplings. The physical consequence of such
an O(d—1) symmetry is then that it is impossible in any formation or product-

ion experiment to isolate a pure spin two fo resonance, without the associated

*) We do not establish here any general rule for an arbitrary level N to
decide directly (i.e., without building up from the lower levels) which
irreducible representations of 0(25) are physical and which spurious.
Such a rule is probably too complicated to be useful; it cannot depend
only on the shape of the Young tableau, but must depend also on the
partitioning of N into integers, since there exist Young tableaux
(e.g., 2000...:} at N=4) for which both a physical and a spurious
state exist.
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spin zero °-' contribution (the two contributions can be separated only by

a subsequent partial wave analysis of the data). We can rewrite this tensor

(now i,j=1,2,3)

%(';‘* qu-r - ’;'3:5(9."."9-‘?2 ¥ )(aow (m})_‘.\ |> (5)

I
Fo . 0-
Similarly at N=3 the gBOOOO....} 0(25) tensor becomes a sum of {3}
and 512 in 0(3) with relative coefficient of the vector daughters prescribed

-+ ) (@) L 8yt + Sl + Bual) 1,

The g‘HOOO....} representation has a dimension-independent form and becomes

the unnatural parity {13 state at this level.

At N=4 +the totally symmetric ¥4000O....3 becomes a sum of {43
and 523 (the expected scalar {O? is already spurious); §2’|OOO....§
becomes a sum of 223 and §o§ 520000...3 becomes EZ} plus {oi;
and finally the fully contracted §00000....3 becomes {03 . To summarize
at the level N=4 +the four 0(25) tensors become seven 0(3) tensors, but

only four of their couplings are independent.

Of course all relative couplings within the model are prescribed uni-
quely from the beginning; what we are asserting here is only that, for factor-
ization in an arbitrary multiparticle channel, the specification of one coupling
constant appropriate to each 0(25) representation is sufficient to specify
the coupling constants of all physical states for that channel. Let us confirm
that this pattern of coupling constants exists by examining the simplest cases.

Firstly the four—point function which can be written

PeaTid) . 5 O

(- os- el«) h=o n-s

with

Rh (¢) = -;'\-‘— (O(e-vl) (olg+2) crenn (cle+ h)

In terms of the scattering angle z=cosOS, we have, on mass shell, for unit

intercept
T e - B [E-4) + )] .
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so that the relative parent daughter couplings for natural parity agree with
those of Egs. (5) and (6) respectively. One can proceed to the multiparticle
functions. One simple example, only, will be given herej; more complicated

factorizations can be handled similarly. We write
~dg+0l; voy

(dxay G-y 0-370‘3" L (o)

i R (oha oty ol Ys)
= ™ot
AMET)

where, for example,

R, = 4 (ls-ct, -o(gy(o(,--o(rolz-»b B, (-ot, :z..o@
+ (ols—o -—oﬂ (o, +\) B, (=ots, )-o(.,_)

(9)
+ -71-_ (o(z+ )) (°(:.‘}'2> Bll— ("N3>—°(”>

For comparison, we re-calculate R2 according to the prescription

Ro= 0 <oWV(RY DO VIR) D) V(H) 10y o)
Aoy

vy« oq(-@p 3 &) (@p 2%
_,-us-"fvm* )

(ag g7

g_ | A2> <}\2| is the completeness relation implied by Egs. (4) and (5)

Expanding the vertex

V(h\ = <\— N2 \3.04("" q’ o‘('H) MRS (F’% M)(H)

a®

D)

one finds that these three terms (all other terms vanish) become respectively

the three terms for R2 in Eq. (9), for unit intercept.
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The method of I is easily extended to the Neveu-Schwarz model 8). In

place of I’n we use the raising operators

"k ( ) (e-)
G = -n
.- 2w ED A
w =ny'la (12)
(\") b(hn\)‘l'
+ ‘Zr‘

59 59 -Z—,..., to build up irreducible representations of the Neveu—

Schwarz algebra. It is convenient to use the Fock space 3‘2 of Ref. 9);

for n_l 2
we can then build up physical and spurious states from the pion state |O>

(N=1%) and find the following results for the physical states in a general
’ y g

d dimensional space time
R loy

Young tableau .+ or {ooo...}

L
N=1 £(:.)+ 'o> /i_= 2)3)4)'"“) (d-').

Young tableau D or {100...}

Young tableau H or 2110...3

N=2 L(-’;i_)"' .Lg-',—)“‘ :L(EH‘ l o> ( -ko{“\b ont '.SJ\MMQ,\:N'&A)

=
1
|

Young tableau or {1110...3
Togrey « amar) - 25 (]

Young tableau [:D or {2000...} .

According to Refs. 4), 10), these irreducible representations form a complete
basis of the physical states on mass shell when d=10; as discussed already
for the conventional model, the 0(9) representations restricted to a three-

dimensional representation space become reducible representations of 0(3)
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which decompose into irreducible representations with related coupling constants.
For d=4, the representations listed above become [bf., Ref. 92] the

™ (N=%), the @ (W=1), the W (¥=}); at N=2 the §1110... § represent-
ation becomes the §oz representation of 0(3) corresponding to the ' and
the {2000.... 3 becomes a sum of { ; (fo) and 5.03 (o') with relative

coefficient given by

£(1)+ i J)(ﬂ* ""f) —~ g,.- S5 (a™ 3;"") +

w

+ (J_-._>S (a(df gs)-r)] ‘>

G—/

(13)

To check this relation between coupling constants we consider the

Lovelace formula 1 and its pole expansion

PO T i R, ©
I ( 1-cle- ofk) ney M7 (14)

and using the Neveu-Schwarz masses m2 =‘—%, m2 = 0, one finds on mass shell

- P

in terms of the scattering angle z::(cos@s)
R:. = ol C“&"")

- 2 [E-9) (4-4)]

(15)

as expected from the 0(9) invariance exhibited in Eq. (13).

7Thﬁé'one can now realize that the underlying 0(25) invariance of the
conventional model, and the 0(9) invariance of the Neveu-Schwerz model is not
so deeply hidden when one simply studies the 14 (s) =2 residue of the beta

function, and the Lovelace formula, respectively. TIThis provides a rather simple

method for obtaining the critical dimension of a model, once the amplitude for

four scalar particles is known.

We now discuss two alternative possibilities.

One possibility, the more aesthetic one, is that the “correct™ dual
model, if it exists, has critical dimension d=4. Then all parent—-daughter
relations of the type discussed above will be lost. We have nothing to add

about this possibility except to mention that it might receive encouragement
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from the fact that in the attractive Lovelace formula, Eq. (14), for physical
masses m_i,: 0 and mi: %, at the level o (s)=2, the o-! decouples
and the f meson parent may be recognized as a pure 0(3) irreducible repre-
sentation. Ghosts are absent in this four—point function for d=4, but re-

appear for any d4d > 5.

The alternative possibility is that a realistic model should have d >4,

and it is this that we would like to explore, and possibly to advocate, here.

More important, quite independent and outside of the dual model frame—
work, we may make an O(d—1) ansatz for the daughter strengths and examine

what is d empirically.

First let us distinguish between 4d (the total number of components of
the external momenta which can include the four Lorentz dimensions plus addition—
al dimensidns to accommodate internal gquantum numbers) and a different dimension
D which characterizes the degeneracy of the spectrum. From the experience of
the models which are understood, we expect that for b sets of bosonic (commu—
ting) oscillators and f sets of fermionic (anticommuting) oscillators the

level degeneracy fD (N) of the level N is given by

po —b(d-?.) %o . m"/z 'F(d'l) o
T( 0"‘") T(— (X ) = Z (200 x (16)
=y m=1 ,
N:D,'s)l e
and then the Hardy-Ramanujan asymptotic form of _9 (N) is 12)
g ™
s 5z imos ()

where mhdvﬁ is the mass and T 1s the effective Hagedorn temperature 12 .
*%

In terms of

D= @) (boif) (19

*) In Egs. (16) and (18) we have implicitly assumed that two dimensions of
oscillators decouple in the critical dimension. If only one dimension
were to decouple there (d—2) should be replaced by (d—1); none of
the conclusions are altered.

**) Equation (18) assumes that the model is really in its critical dimen-—
sion; for a model below its critical dimension (and assuming that then
only one dimension is decoupled by gauge conditions - see previous foot—
note) then 3(b+if) < D < (d-2)(b+if). This does not alter the conclu-
sion that few additional oscillators can be added in a "correct" dual
model.



we have

]3: -;': ()4") (19.8,)

¢
1= 3{:[_ s (19.b)

There are already some arguments to determine B and T of the level density,

Eq. (17), and thereby D through Egs. (19) :

1) Hagedorn 12) finds by fitting transverse momentum distributions in multi=

particle production a temperature T corresponding to D=4, 5 or 6.

2) Huang and Weinberg 13) have pointed out that in certain models of the early
universe, no thermal equilibrium is possible unless B < %, which would
imply D < 6.

3) Assuming the strong statistical bootstrap condition of Frautschi and Hamer 14)

leads these authors to a level density where B=3 corresponding to D=5,
These three arguments therefore most favour the value D =~ 5.

To give an estimate of d we move on to the question of whether parent-
daughter coupling relations of the kind discussed earlier in the article exist
in Nature. Unfortunately, there is very‘scanty evidence about meson daughters,

so we are forced to introduce uncertainties and to look at the baryon spectrum.

In the recent =r N phase shift analysis of Almehed and Lovelace 15)

there occur seven candidates for daughters spaced two units below a parent,
two in the Z& sector and five in the N sector. These seven pairs are listed

in the Table.

Following the discussion of O(n) irreducible representations given
earlier, it is straightforward to find that for the decay widths of a spin J

parent, and its related spin (J—2) daughter (into two ground states) are in

the ratio
r,:,-,,_ = (9\.72'— '/L) ("\" 4"\)
— (20)
r"_a_ (9_3*._ D (2,‘3"-— 5+ OD
Let us now make two strong simplifying assumptions : a) the O(d-1)

relations for bosons can be taken over to the baryon sector directly, b) the
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*)

parent=daughter width ratios are to be compared directly to total widths

rather than to partial widths.

The use of these two assumptions leads to quite an interesting result.
The estimated d 1is presented for the seven cases in the last column of the
Table. We see that the values of d are surprisingly consistent and favour
d=6 or 7.

When we abstract from the dual models the concept of O(n) relation-
ships and postulate directly that such relationships hold for daughter resonan-—
ces, then the N phase shifts imply that the relevant group is most likely
to be 0(5) or o0(6).

Taken together with the arguments based on the level density, we see
that for dual models D x (d—2) ~ 5 and thence, from Eq. (18), either b=1,
£=0 (as in the conventional model) or b=0, f=2. This suggests that one
may not add a large number of new types of excitation (i.e., new oscillators)
to form a realistic dual model. On the other hand, the extra (d-4) dimensions

*%
may be essential to incorporate internal quantum numbers .

More generally, we can see from relations of the type Eq. (20) that
daughter widths increase rapidly‘as d increases above d=4. This applies,
of course, only to those daughters ("trace daughters") which arise from the
reducibility of the O(d-1) irreducible representations restricted to a three-
dimensional space; such daughters constitute, however, the large majority of
daughters in the model since their level degeneracy increases exponentially
with a higher exponent than the corresponding degeneracy of all other daughters

%R
(i.e., "genuine daughters" which are present already in the critical dimension) )

*) Note that Eq. (20) does not contain a threshold dependence k4, since it
ig the reduced coupling constants (g2k2ﬁ) which are related directly in
our reduction O(d—1) - 0(3). In terms of the more conventional coupling
constants, this means that (gﬁ/g% 2)—>m as k-0 such that the ratio of
the widths (ggz the reduced width57 remains constant.

*%

) It is possible to make plausible that the Pomeron can remain a pole if the
integral over a component of loop momentum is replaced by a sum over an
infinite number of values of a discrete quantum number.

***)

At intermediate energies the low partial waves (especially those for

4 < Jg) in the beta function are too strong when compared to phenomeno-
logical fits 16 ; in other words these daughter resonances are on average
too wide. We may attribute this in part to the fact that the model has a
critical dimension d=26 which is such that 4 >> 4 (or 7). The trace
daughters decouple in the critical dimension, become negative width ghosts
for d > 26 and develop progressively larger positive widths as we decrease
d below the critical dimension.

In any event, further and more important absorption of these low partial
waves is of course expected when Regge cuts are introduced in unitarity
corrections.
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It will be interesting if further empirical evidence for channel-
independent parent-daughter strengths, as vestiges of a higher dimensionality,

can be accumulated.

It is a pleasure to thank members of the Theoretical Study Division for
interesting discussions, in particular mentioning H.B. Nielsen, M. Toller and
G.C. Wick.

TABLE

PARENT DAUGHTER PARENT DAUGHTER
RESONANCE RESONANCE WIDTH WIDTH (a-1)
(MeV) (MeV)
Fair (1925) Pys (2150) 200 200 5.0
F35 (1875) P31 (1900) 250 . 200 4.46
G, o (2225) D, (2075) 150 150 5.0
L (2000) Py (1850) ?oo 300 6.6
Frs (1688) P, (1720) 140 160 5.46
D15 (2100) S4, (2100) 150 200 6.2
D15 (1683) 84 (1670) 150 120 4.46
Mean (d-1) = 5.3
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