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Previously known algorithms to compute the symmetry group
of a cusped hyperbolic three-manifold and to test whether two
cusped hyperbolic three-manifolds are isometric do not apply
directly to closed manifolds. But by drilling out geodesics
from closed manifolds one may compute their symmetry groups
and test for isometries using the cusped manifold techniques.
To do so, one must know precisely how many geodesics of
a given length the closed manifold has. Here we prove the
propositions needed to rigorously compute a length spectrum,
with multiplicities. We also tabulate the symmetry groups of
the smallest known closed hyperbolic three-manifolds.

1. INTRODUCTION

A canonical cell decomposition lies at the foun-
dation of algorithms for deciding whether or not
two cusped hyperbolic three-manifolds are isomet-
ric [Hildebrand and Weeks 1989] and for computing
the symmetry group of a cusped hyperbolic three-
manifold [Henry and Weeks 1992]. The canonical
cell decomposition depends on a convex hull con-
struction in Minkowski space [Epstein and Penner
1988; Weeks 1993; Sakuma and Weeks 1995]. That
construction makes essential use of a manifold’s
cusps, and does not generalize directly to closed
manifolds. Fortunately we can transfer questions
about closed manifolds to questions about cusped
manifolds by looking at the complement of a set of
disjoint simple closed geodesics.

Throughout this article, M will denote a hyper-
bolic three-manifold of finite volume. In this intro-
duction we further assume that M is closed. We do
not assume it is orientable, because our results, as
well as the results we quote from [Kojima 1988] and

© A K Peters, Ltd.
1058-6458/96 $0.50 per page



262 Experimental Mathematics, Vol. 3 (1994), No. 4

[Sakai 1991], apply equally well to nonorientable
manifolds.

Definition. A geodesic link is a finite set of closed
geodesics in M. A geodesic link is simple if its
constituent geodesics do not intersect themselves
or each other.

Proposition 1.1 [Sakai 1991]. If M is a closed hy-
perbolic manifold and L is a simple geodesic link
in M, the complement M \ L admits a complete
hyperbolic structure of finite volume.

Definition. The complez length of a closed geodesic
is A+1i60, where A is the geodesic’s length and 0 is its
torsion. (See sidebar on page 263.) A geodesic link
L is complete if it has the property that, whenever
A+ 16 is the complex length of a geodesic in L, all
geodesics of complex length A £ 46 are in L.

We denote by Isom M the group of isometries from
M to itself. We also refer to this as the symmetry
group of M. By Mostow rigidity, Isom M is natu-
rally isomorphic to the group of homeomorphisms
from M to itself, up to homotopy.

Proposition 1.2 [Kojima 1988]. If L is a complete
simple geodesic link in a closed hyperbolic three-
manifold M, the group Isom M is naturally isomor-
phic to the subgroup of Isom(M \ L) consisting of
symmetries that take meridians to meridians (that
is, symmetries that extend to M).

Proof. This follows immediately from Lemma 5 and
Proposition 6 of [Kojima 1988]. The basic idea is
that a symmetry of M must preserve the complete
geodesic link L, and therefore restricts to a homeo-
morphism of M \ L to itself. By Mostow rigidity,
the homeomorphism is homotopic to an isometry.

O

This proposition lies at the heart of our method for
computing the symmetry group of a closed hyper-
bolic three-manifold M, which is, in outline, the
following (see Algorithm 2.4 for a fuller version):

Algorithm 1.3. Step 1. Find a complete simple geo-
desic link L of M, and drill it out.

Step 2. Compute the symmetry group of M \ L
using the canonical cell decomposition mentioned
above, then take the subgroup of Isom(M \ L) that
sends meridians to meridians. By Proposition 1.2,
this subgroup is naturally isomorphic to Isom M.

Unfortunately, at step 1 we have no proof that
M even contains a complete simple geodesic link,
let alone an algorithm guaranteed to compute one.
We do, however, have a heuristic that works very
well in practice. The heuristic, and the underlying
mathematics, are the main topic of this article.

Step 2 is more straightforward: the canonical
cell decomposition mentioned at the beginning of
this section is guaranteed to exist, and the algo-
rithm that computes it will either succeed or run
forever (so far it has always succeeded quickly, and
indeed one may be able to construct a statistical
argument that it must eventually succeed). Given
the canonical decomposition, it is straightfoward
to compute Isom(M \ L), and to check which of its
elements preserve meridians.

A similar technique allows us to test whether two
closed hyperbolic three-manifolds M and M’ are
isometric: we drill corresponding complete geode-
sic links out of both M and M’, then use canonical
decompositions to check whether M\ L and M'\ L’
are isometric by a meridian-preserving isometry.

The computer program SnapPea [Weeks 1995]
implements Algorithm 1.3, as well as other algo-
rithms for creating and studying hyperbolic three-
manifolds. The logical status of these algorithms
varies: some are rigorous and guaranteed to pro-
duce correct results in a finite number of steps;
others, like the one just described, are heuristics
that work well in practice but could in principle
fail; still others, like the length spectrum algo-
rithm described in Section 3 below, are rigorous in
the strict mathematical sense, but in practice are
subject to the limitations of fixed-precision floating
point computations.

The rest of this paper is structured as follows.
Section 2 discusses our heuristics for finding a com-
plete simple geodesic link, first presenting the basic
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ISOMETRIES OF H?

The classification of orientation-preserving isometries of hyperbolic three-space H®, and their relation to elements
of PSL(2, C), is very well-known (see [Beardon 1983, Section 4.3], for example). The classification of orientation-
reversing isometries is less familiar, so we outline it here for convenience, showing how geometric information
can be derived from algebraic data.

Recall that Minkowski space E*! is R* with a quadratic form v of signature (3, 1), which we take as v(z,y) =
—ugUp + U1 V1 +Uusvs +uzvs for concreteness. H2 has a natural embedding in E®! as either of the two sheets of the
hyperboloid |v| = —1. The isometry group O(3,1) of E*! has a subgroup O*(3,1) of index two that preserves
each sheet, and which can be regarded as the isometry group of H®. Further, Ot (3,1) has two components,
consisting respectively of orientation-preserving and orientation-reversing transformations.

An orientation-preserving transformation that is not the identity fixes either one or two points at infinity
(isotropic vectors of v up to scalar multiplication). If there is one fixed point at infinity, the transformation
is parabolic. If there are two, the transformation is elliptic if it has fixed points in H? itself and hyperbolic
otherwise (we do not distinguish between screw motions and translations). By conjugation, we can reduce any
orientation-preserving transformation to one of the following forms:

identity parabolic elliptic hyperbolic
1000 3 —3 10 10 0 0 coshA simhA 0 0
01 00 % % 1 0 0 1 0 0 sinh A cosh A 0 0
0 010 1 -1 1 0 0 0 cosff —sind 0 0 cosf —sinf
0 0 01 0 0 0 1 0 0 sinf cos 0 0 0 sin 0 cos 0

Conjugacy classes of hyperbolic and elliptic orientation-preserving isometries, taken together, form a two-
parameter family, parametrized by the complex number A + 6 (defined modulo 27%). This number is called the
complex length associated with the transformation, and also the complex length of the corresponding geodesic
in the quotient manifold; it equals 2arccosh(% tr), where tr is the complex-valued trace of the corresponding
matrix in PSL(2,C) (which is determined up to sign).

An orientation-reversing transformation g always leaves some plane P globally invariant. By composing with
reflection in that plane, we reduce to an orientation-preserving transformation f that leaves the same plane
invariant. Therefore f is elliptic, parabolic, or hyperbolic with # = 0, and we assign g the same type as f, unless
g is a pure reflection in a plane orthogonal to P (in which case f is elliptic with § = 180°). A pure reflection
may be considered a degenerate isometry of any of the three types. Thus, by conjugation, we can reduce any
orientation-reversing transformation to one of the following forms:

pure reflection parabolic elliptic hyperbolic

1 00 0 3 —z 10 1 0 0 0 coshA sinhA 0 0
0 -1 0 O % % 1 0 0 -1 0 0 sinhA coshA 0 O
0 010 1 -1 1 o0 0 0 cosf) —sinf 0 0 1 0
0 0 01 0 0 0 -1 0 0 sind cos 6 0 0 0 -1

We see that hyperbolic and elliptic orientation-reversing isometries form separate one-parameter families,
parametrized up to conjugacy by the real length A or the rotation angle 6. Here too we call A + 76 the complex
length associated with the transformation. These numbers are determined by the trace of the transformation’s
matrix in O(3,1): this can be seen by inspecting the standard forms just given and using the fact that the
trace is a conjugacy invariant. Thus we can read geometric information off the matrix, as follows. An orienta-
tion-reversing transformation of trace less than 2 is an elliptic isometry of rotation angle 0 = arccos(% tr), and
an orientation-reversing transformation of trace greater than 2 is an hyperbolic isometry of translation distance
A= arccosh(% tr). An orientation-reversing transformation of trace 2 may be either parabolic or a pure reflection.
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idea and then elaborating as shortcomings of that
idea become obvious. Inasmuch as the heuristics
have been implemented in SnapPea, we frame the
discussion in terms of SnapPea’s capabilities and
algorithms, but the theoretical results that accom-
pany this discussion should make it clear that the
algorithms are independent of any particular im-
plementation.

In Section 3 we present a rigorous algorithm for
computing how many geodesics of a given complex
length appear in the manifold, a computation that
is required by the heuristic algorithm of Section 2.

Finally, Section 4 lists the results of the appli-
cation of this paper’s techniques to a number of
closed hyperbolic three-manifolds of small volume.

2. FINDING A COMPLETE SIMPLE GEODESIC LINK

The only curves that SnapPea can drill out are
those that embed in the dual one-skeleton of a tri-
angulation representing a given manifold. Snap-
Pea prepares a list of all such curves, giving the
complex length of the unique geodesic in each ho-
motopy class, and the user (who may be either a
human or another computer program) says which
curve he, she or it would like drilled out. To drill
out a complete simple geodesic link, we ask Snap-
Pea to successively drill out several curves of the
same length. However, several pitfalls await us.

(a) A desired geodesic may not be homotopic to any
simple closed curve in the dual one-skeleton, in
which case we can’t drill it out.

(b) A curve in the dual one-skeleton may be homo-
topic, but not isotopic, to a desired geodesic. In
this case SnapPea will drill out a curve in the
wrong isotopy class.

(c) Even if we avoid (a) and (b) and successfully
drill out a complete simple geodesic link, we
won’t know a priori that we’ve done so.

We can avoid pitfall (c) if we know in advance how
many curves of a given complex length our mani-
fold contains. In Section 3 we will present results
that allow us to compute a length spectrum with

multiplicities, so SnapPea is able to successfully
deal with (c).

As for pitfall (b), when we drill out a curve in
the wrong isotopy class, we still obtain some useful
information. If L' is a link that is homotopic but
not isotopic to the desired geodesic link L, and
if M\ L' is hyperbolic, the group Isom(M \ L')
will be a subgroup of Isom M. Roughly speaking,
every symmetry of M \ L' that preserves meridians
on the boundary extends to a symmetry of M, but

not every symmetry of M restricts to a symmetry
of M\ L.

Proposition 2.1. If L' is a set of nonintersecting (not
necessarily geodesic) simple closed curves in M,
and if M \ L' is hyperbolic, the subgroup of isome-
tries of M \ L' that sends meridians to meridians
injects naturally into Isom M.

Proof. This follows from an observation of Sakuma,
quoted in the proof of [Kojima 1988, Prop. 6].
A theorem of Borel [Conner and Raymond 1972]
states that if G is a finite group acting effectively
on a closed aspherical manifold M and 7; (M) has
trivial center, the induced homomorphism from G
to Out 7, (M) is injective. So let G be the subgroup
of Isom(M \ L') that sends meridians to merid-
ians, and then apply Mostow rigidity to equate
Out 7y (M) with Isom M. O

Roughly speaking, Isom(M \ L') gives us a lower
bound on the symmetry group Isom M. Our strat-
egy is to look for an upper bound on the order
of Isom M. If our upper bound equals the order
of Isom(M \ L'), we know that Isom(M \ L) =
Isom M.

To obtain an upper bound, we have SnapPea
drill out a simple closed curve K from the dual
one-skeleton of the given triangulation of M. It
follows from Thurston’s theory of hyperbolic Dehn
filling [Thurston 1979, Ch. 4] that, if the hyper-
bolic structure on M is the metric completion of
an incomplete hyperbolic structure on M \ K tri-
angulated by positively oriented ideal tetrahedra,
the curve K must be isotopic to a geodesic. In
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this case, Proposition 2.2 below lets us compute
the subgroup of Isom M that preserves the unique
geodesic isotopic to K, and Proposition 2.3 then
gives us an upper bound on |Isom M]|.

Let Isom(M, L) be the subgroup of Isom M that
preserves a geodesic link L.

Proposition 2.2 [Kojima 1988]. Let M be a closed
hyperbolic three-manifold. If L is a (not necessar-
ily complete) simple geodesic link in M, the group
Isom(M, L) is naturally isomorphic to the subgroup
of Isom(M \ L) that takes meridians to meridians.

Proof. Just like Proposition 1.2, this follows from
[Kojima 1988, Lemma 5 and Prop. 6]. O

Proposition 2.3. Let K be a simple geodesic knot in
M with complex length A+10, and let n be the num-
ber of closed geodesics of M with complex length
A £i6. Then |Isom M| < n |Isom(M, K)].

Proof. Let S be the set of closed geodesics with
complex length \ 4+ ¢0. Symmetries of M preserve
length and absolute value of torsion for geodesics,
so the group Isom M acts on S. The stabilizer of
K is Isom(M, K), so the orbit of K has order equal
to |Isom M| / |Isom(M, K)| < |S| = n. O

In summary, here is our procedure for computing
symmetry groups of closed hyperbolic manifolds,
as implemented in SnapPea:

Algorithm 2.4 (Computing symmetry groups).
Input: A closed hyperbolic manifold M.
Output: The symmetry group of M, or failure.

o Compute the length spectrum of M up to some
maximum length A (see Section 3; for low-volume
manifolds A = 1.5 works well).

o For each complex length in the length spectrum:
e Try to drill out a single curve K of that com-

plex length.

o If M can be recovered as a hyperbolic Dehn
filling on M \ K with all positively oriented
tetrahedra, apply Proposition 2.3 to obtain an
upper bound on |Isom M]|.

e Try to drill out the complete geodesic link L
consisting of all curves of the given length and

absolute value of torsion. If this is possible, use
Proposition 2.1 to obtain a lower bound on the
order of Isom M.
 If the best lower bound equals the least upper
bound, the best lower bound is indeed |[Isom M.
« Else, return failure.

Note that the algorithm may fail to drill out the de-
sired curves at any step (see pitfall (a) on the pre-
ceding page). Even if it does drill out the desired
curves, the presence of negatively oriented tetra-
hedra may prevent us from establishing an upper
bound on the order of |[Isom M|. Nevertheless, the
algorithm works well in practice: it successfully
computes the symmetry group of all but five of the
11,031 distinct low-volume closed hyperbolic three-
manifolds studied in [Hodgson and Weeks]. The
authors have computed the symmetry groups of
the five exceptional cases using ad hoc techniques.

Question. Do all closed hyperbolic three-manifolds
contain a complete simple geodesic link?

3. LENGTH SPECTRA

As explained in Section 1, to drill out a complete
simple geodesic link we need to know how many
geodesics of a given complex length appear in M.
In other words, we need a length spectrum with
multiplicities. The remainder of this section ex-
plains SnapPea’s algorithm for rigorously comput-
ing such a length spectrum.

Notation. Throughout this section M represents a
hyperbolic three-dimensional manifold or orbifold
of finite volume, and = € H® is an arbitrary base-
point in the universal cover H? of M. If M is
an orbifold, we assume that = does not lie in the
preimage of the singular set (that is, x is not a
fixed point of any covering transformation).

The key idea is to begin with a Dirichlet domain
for M. We recall the definition. For each covering
transformation g of M, let H, be the half-space
consisting of points at least as close to = as to gz:

Hy={p e B | d(p,z) < d(p, gz)}.



266 Experimental Mathematics, Vol. 3 (1994), No. 4

The Dirichlet domain D of M (with basepoint z)
is the intersection of the H; for all covering trans-
formations g. Because M is geometrically finite, D
is a finite-sided polyhedron. If M is a noncompact,
some of the vertices of D will be ideal points on the
sphere at infinity.

Remark. A choice of basepoint x such that the dis-
tance d(z,gz) from z to its nearest translate is
maximal typically leads to a more symmetrical Di-
richlet domain, and also to a smaller spine radius
(discussed below). However, all results in this sec-
tion are valid for any choice of basepoint.

For the present purposes we assume given a Dirich-
let domain. SnapPea computes Dirichlet domains
using an algorithm that usually succeeds, but can
fail for large manifolds because of the rapidly accu-
mulating round-off errors inherent in matrix mul-
tiplication in O(3,1). (For a brief explanation of
this algorithm, see [Hodgson and Weeks]. A more
detailed exposition may appear later; meanwhile
one may consult the extensive documentation in
the files Dirichlet.c, Dirichlet.h, Dirichlet_
basepoint.c and Dirichlet_construction.c in
[Weeks 1995].)

Let D be a Dirichlet domain for M with base-
point x. A typical translate of D will be denoted
gD, where g is an isometry in the group of covering
transformations.

We'll tile an approximate ball in H® with trans-
lates gD of D. Each primitive hyperbolic isom-
etry g corresponds to a translation along a geo-
desic, perhaps followed by a rotation or reflection
fixing the geodesic pointwise. (See the sidebar on
page 263.)

We’d like to find all translates gD of D that move
the basepoint x a distance less than some given
distance s, that is, all gD such that d(z,gz) <
s. The simplest algorithm is to start with D and
recursively attach its neighbors, stopping the re-
cursion when we reach translates gD that move
the basepoint a distance greater than s—that is,
when d(z,gz) > s. For an arbitrary fundamental
domain (not necessarily a Dirichlet domain) with

an arbitrary basepoint, this algorithm might fail:
there could be a translate moving the basepoint a
distance less than s, all of whose neighbors move
the basepoint a distance greater than s. The sim-
ple recursive algorithm would not find such a trans-
late. Fortunately this cannot occur for a Dirichlet
domain.

Proposition 3.1. Let D be a Dirichlet domain with
basepoint x, and let gD be a translate of D such
that d(x,hz) > d(z,gx) for all neighbors hD of
gD. Then g is the identity.

Proof. For each neighbor hD of gD, the inequality
d(z,hx) > d(z,gx) implies that z lies in the half-
space H}, consisting of points closer to gx than hzx.
But gD is the intersection of all such Hp, so z
must lie in gD. Our assumption that no covering
transformation fixes = implies that no translate gD
contains z, except for D itself. Therefore gD = D,
and g is the identity. O

If we want to find all geodesics of length at most
A, to what radius s must we tile H3? The answer
to this question depends not only on A, but also
on the size of the Dirichlet domain. The relevant
measure of size is the “spine radius”, which we are
about to define. Proposition 3.3 provides a practi-
cal means of computing the spine radius. Proposi-
tion 3.4 then expresses the required tiling radius s
in terms of the spine radius = and the cutoff length
A

To introduce the spine radius, we observe that
the Dirichlet domain D, with faces identified, de-
fines a cell decomposition K for M. Let K’ be a
cell decomposition of M dual to K, including the
“three-cells” dual to any ideal vertices of K. The
two-skeleton of K’ is a spine dual to the Dirichlet
domain.

Proposition 3.2. A spine dual to the Dirichlet do-
main must intersect every closed geodesic of M.

Proof. Let K and K' be as above. The three-cells
of K' are in one-to-one correspondence with the
vertices of K. If M is a manifold, each three-cell
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of K' will be either a topological ball (if the cor-
responding vertex of K is finite) or a topological
torus or Klein bottle cross a half line (if the corre-
sponding vertex of K is ideal). If M is an orbifold,
a three-cell dual to a finite vertex may be a cone
on any spherical two-orbifold, and a three-cell dual
to an infinite vertex may be any Euclidean two-
orbifold cross a half line. We know the three-cells
must take this form because the singular set (if
any) must be contained in the Dirichlet domain’s
boundary; this follows from our assumption that
the basepoint « does not lie in the preimage of the
singular set. It follows that no geodesic may lie
entirely in a single three-cell of K’, since it would
then be contractible (or perhaps boundary parallel
if M has cusps). Therefore every geodesic must
intersect the two-skeleton. O

Definition. The radius of a spine dual to a Dirichlet
domain is the maximum distance from a point in
the spine to the basepoint. The Dirichlet domain’s
spine radius is the infimum of the radii of all spines
dual to the domain.

The following definition is local to the next propo-
sition. The mazimin edge distance of a Dirichlet
domain is the maximum over all the domain’s edges
of the minimum distance from the edge to the base-
point x.

Proposition 3.3. The spine radius is the mazimin
edge distance.

Proof. Any spine dual to the Dirichlet domain must
intersect every edge, so the spine radius is greater
than or equal to the maximin edge distance. It
remains to show that for any € greater than zero,
we can construct a spine whose radius is within
¢ of the maximin edge distance. Carry out the
following construction in the Dirichlet domain D
(not the space M obtained by identifying faces),
replacing € by a smaller value if necessary.

Step 1. On each edge, mark the point closest to the
basepoint. If that point is at an endpoint, displace
it a distance € into the interior of the edge. The
edge identifications respect the marked points, and

the marked points all lie within the maximin edge
distance plus ¢ of the basepoint.

Step 2. On each face, mark the point closest to
the basepoint. If that point is on the boundary,
displace it a distance ¢ into the interior of the face
(towards the center, say). The face identifications
respect the marked points, and the marked points
all lie within the maximin edge distance plus € of
the basepoint.

Step 3. Draw lines from the marked point in the
interior of each face to the marked points on the
incident edges. The face identifications respect the
lines, and the lines all lie within the maximin edge
distance plus ¢ of the basepoint.

Step 4. Cone the complex created in steps 1-3 to
the basepoint. This gives a spine dual to the Di-
richlet domain and lying within the maximin edge
distance plus ¢ of the basepoint. ]

Note that the spine radius is finite even for Di-
richlet domains of cusped manifolds, whose radius
is infinite. As already mentioned, the techniques
of this section work to compute length spectra for
cusped manifolds as well as closed ones.

Remark. In practice, in order to improve perfor-
mance, SnapPea removes certain two-cells from the
spine to reduce its radius without compromising
the fact that every geodesic must intersect it. This
modification does not affect the basic theory.

For the remainder of this section, we denote by r
the spine radius of the Dirichlet domain D.

Proposition 3.4. To find all closed geodesics of length
at most X, it suffices to find all translates gD such
that d(z,gz) < X+ 2r.

Proof. For each closed geodesic =y of length at most
A, we must find a covering transformation g whose
axis is a preimage of the geodesic v and which sat-
isfies d(z, gz) < A + 2r.

Choose € > 0, and construct a spine S dual to
D with radius at most 7 + . (See Figure 1.) By
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FIGURE 1. The distance from z to gz is at most
r + A+ r, where ) is the translation length of g.

Proposition 3.2, a lift of the geodesic v must in-
tersect S at some point P. Let g be the cover-
ing transformation corresponding to this lift of +.
Then d(P, gP) = length g, and

d(z, gz) < d(z, P) + d(P,gP) + d(gP, gz)
<(r4+e)+A+(r+e)=A+2r+2e.
Let € go to zero to obtain d(z,gz) < A+2r. O

With a little extra care, we can improve on the
estimate of \ + 2r.

Proposition 3.5. To find all closed geodesics of length
at most A, it suffices to find all translates gD such
that d(z, gz) < 2cosh™ " (coshr cosh(2\)).

Proof. Same as that of Proposition 3.4, except that
instead of using a point P where v intersects the
spine, we use a point @ at which the distance from
7 to the basepoint z is a minimum (Figure 2). For
all choices of ¢ and S we have d(z,Q) < d(z, P) <
r+ ¢, so d(z,Q) < r. The advantage of using
Q@ instead of P is that the segment from z to @
is orthogonal to the geodesic 7. If we let M be
the midpoint of the segment from @ to g@) we can
use hyperbolic trigonometry to bound the distance
from z to M as d(z, M) < cosh™*(coshr cosh(2))).
The distance from = to vz will be at most twice
that. 0

Remark. Empirical tests show that for small mani-
folds the length spectrum computation runs about

FIGURE 2.

The distance from x to gz is at most
2 cosh™ (coshr cosh(1))).

five times faster with the bound of Proposition 3.5
than with that of Proposition 3.4. Theoretical es-
timates predict that, as r and A go to infinity, the
run-time difference approaches a factor of 16.

Proposition 3.5 tells us how to find group elements
corresponding to all geodesics of length at most
A. But different groups elements may be conju-
gate to one another and correspond to the same
geodesic. To find a length spectrum with correct
multiplicities, we must find precisely one group el-
ement in each conjugacy class. The following al-
gorithm does that; in its statement, the big list
is the complete set of group elements g satisfying
d(z, gz) < 2cosh™(coshr cosh(2\)), and the small
list is a subset of the big list that gets whittled
down until precisely one element of each conjugacy
class remains.

Algorithm 3.6 (Removing duplicates).
(Initialize) Set the small list equal to the big list.

Step 1. Remove group elements whose correspond-
ing complex lengths have real part zero. If M is a
manifold these elements will be parabolic, but if M
is an orbifold elliptics may also occur. Also remove
group elements of real length greater than .

Step 2. Remove group elements whose axes don’t
pass within a distance r of the basepoint. (Every
geodesic must intersect a spine of radius r + ¢, for
all e > 0, so we are sure to retain at least one
element in every conjugacy class.)
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Step 3. Remove group elements that are powers of
others. We aren’t interested in a “geodesic” that
is just a shorter geodesic traversed twice.

Step 4. Check which of the elements remaining on
the small list are conjugate to one another. Propo-
sition 3.7 below ensures that if two elements of the
small list are conjugate to each other, the conju-
gacy is realized by an element from the big list.
That is, if two elements g; and g, on the small list
are conjugate, there exists an element ~ on the big
list such that g; = hg,h!. Keep precisely one ele-
ment corresponding to each geodesic, and discard
its conjugates, its inverse, and the conjugates of its
inverse. (In a manifold an element and its inverse
will be in different conjugacy classes, but in an orb-
ifold they may be in the same conjugacy class, in
which case the geodesic is topologically a mirrored
interval rather than a circle.)

The resulting small list yields a length spectrum
with correct multiplicities.

Proposition 3.7. If g; and g» are conjugate group ele-
ments corresponding to a geodesic of length at most
A, and both their azes pass within a distance r of
the basepoint, then there is a group element h such
that g, = hgoh™! and

d(z, h) < 2cosh *(coshr cosh(1))).

Proof. Let A; be the axis of g;, and @; be the
point on A; closest to the basepoint z. (See Figure
3.) There are infinitely many covering transfor-
mations taking A; to A,; let h be one that mini-
mizes the distance from h@Q; to @);. Because the
length of the underlying geodesic is at most A, the
distance from hQ); to @, is at most %)\ (if instead
A < d(hQ1,Q2) < A we got the wrong h—we need
to consider an h that takes @; to a point on the
other side of @)2). Now imitate the proof of Propo-
sition 3.5 to get the desired bound for d(z, hz). O

The bound on d(z, hz) in Proposition 3.7 is less
than the bound on d(z, gz) in Proposition 3.5. This
implies that, as claimed, the big list contains all

Ay

As

FIGURE 3. The distance from z to hz is at most
2cosh™*(coshr cosh(3))).

the conjugating matrices we could possibly need in
Step 4 of the above algorithm.

Remark. The methods of this section may also be
applied to compute the based ortholength spec-
trum associated to a fixed geodesic.

4. EXAMPLES

Knowing the lengths and multiplicities of the short-
est geodesics, we applied the technique outlined in
Section 1 to compute the symmetry groups of the
smallest known closed hyperbolic three-manifolds,
which are part of a census of closed hyperbolic
three-manifolds described in [Hodgson and Weeks]
(see also the section on Electronic Availability at
the end of the text).

Table 1 gives the results for the ten smallest
manifolds. Table 2 provides examples of closed
nonorientable hyperbolic three-manifolds, and Ta-
ble 3 lists length spectra for some sample orbifolds
(although the results of Section 3 apply to orbifolds
as well as manifolds, we cannot in general compute
the symmetry group of an orbifold).

On a Macintosh SE/30, each length spectrum
computation took about 30 seconds. The other
computations were almost instantaneous.
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1
=3, 2/Q 3,21 CS = 0.06004307 (x3) 0.79413466 — 2.30485682 ¢
(/ﬁ H1 = Z5 + Z5

Isom = Dg

S vol = 0.94270736 (x3) 0.58460369 + 2.49537046¢ * | (x3) 1.28985116 + 2.48392462 ¢

—3,2
2 vol = 0.98136883 (x1) 0.57808244 + 2.13243064 4 (x1) 1.04031513 + 0.98237189
o CS = 0.07703818 (x1) 0.72156837 — 1.1512129947 * | (x2) 1.79380084 — 1.55687105 i
Q/ H, = Zs (x2) 0.88944300 + 2.94185905 i (x1) 1.82227970 — 2.41353903 i
51 Isom = D, (x2) 0.99832519 — 2.9210177914
)’—% vol = 1.01494161 (x2) 0.83144295 — 1.94553076 i (x1) 1.31695790 + 3.141592654 *
\]—(_j ,{ CS=0 (x2) 0.83144295 + 1.94553076 i (x2) 1.99165239 — 1.29953257 i
1, -\t 1| Hi =73+ 7 (x2) 0.86255463 — 2.680673197 * | (x2) 1.99165239 + 1.29953257
T Isom = Sy (x2) 0.86255463 + 2.680673194 *
4 5 vol = 1.26370924 (x2) 0.57507858 + 1.745322357 * | (x2) 1.80421804 — 1.5223476914
CS = 0.11414066 (x2) 0.66683593 — 2.82503375 (x2) 1.81598680 + 2.23627048
@ Hy =175 +7s (x4) 1.16858110 + 2.63105912
51 Isom = Dy
5 vol = 1.28448530 (x1) 0.48031180 — 0.9337766647 * | (x1) 1.44093541 — 2.80132997 4
/@ CS = 0.06793167 (x1) 0.75757225 + 2.061746121 (x1) 1.51514450 — 2.15969307 i
@/ Hy =7 (x2) 1.14870610 + 2.85490514 (x1) 1.56188878 + 1.21107398 i
3 Isom = Dy (x1) 1.26692640 + 1.02808709 i (x1) 1.90657583 — 1.45364261 i
’ (x2) 1.36531695 — 2.95884090 4
6 vol = 1.39850888 (x1) 0.36613070 + 3.113589947 * | (x2) 1.69233833 — 1.7538512714
/@ CS = —0.24660725 || (x1) 0.90689558 + 1.35222273 % (x1) 1.77974117 + 0.58862018 i
Q/ H; = trivial (x1) 1.07293593 — 1.29048759 (x1) 1.90415991 — 0.62376635 i
" Isom = D, (x2) 1.43906664 + 1.82310235 i
7 vol = 1.41406104 (x1) 0.79413466 — 2.30485682 i (x1) 1.18953767 — 2.75480329 4
@ CS = —0.07660207 || (x1) 0.84359872 + 1.40771544 (x2) 1.23287808 — 2.96153066 i
Q- Hy =7 (x1) 0.85397176 — 0.886069287 * | (x2) 1.35182743 + 2.715675364
o1 Isom = D, (x1) 1.08957507 + 1.7011475214 (x1) 1.96236424 — 0.66176633
8 21 vol = 1.41406104 (x1) 0.36489469 — 1.628243517 * | (x1) 1.16920737 — 1.2924444014
CS = —0.11826873 || (x1) 0.84359872 + 1.407715447 * | (x1) 1.70794352 + 1.3694541014
@ Hy =7y (x2) 0.85802126 — 2.84667560 i (x1) 1.82127130 — 0.51794798
5 -1 Isom = D, (x2) 0.98118212 + 2.81070949 (x2) 1.86598419 + 2.11045463 i
9 7,3 vol = 1.42361190 (x1) 0.35237160 — 1.755530664 * | (x1) 1.22377342 — 2.1175419914
CS = —0.11256515 || (x2) 0.72219447 — 2.56160460 i (x2) 1.74409578 — 2.80561863 i
@ Hy = Zas (x2) 0.83247810 + 2.48715981 1 (x2) 1.75039321 — 2.25499321 ¢
51 Isom = D, (x1) 0.96132230 + 2.083274697 » | (x2) 1.86082909 + 1.79430243 4
10 vol = 1.44069901 (x1) 0.36152158 + 3.051820357 * | (x1) 1.65279232 + 0.60455578
/@ CS = —0.24006071 || (x1) 0.79662309 + 1.47505982 i (x2) 1.73929436 + 2.21381084
Q/ H =173 (x2) 1.25897223 + 1.99299289 (x2) 1.97217761 — 1.82481627
Isom = Dy (x1) 1.26705358 — 1.322707894

w
[V

TABLE 1. For each of the ten smallest known closed hyperbolic three-manifolds, all of which are orientable, we
give: a surgery description that embodies the manifold’s full symmetry group; the volume; the Chern—Simons
invariant (mod %), the first homology; the symmetry group; and the length spectrum to A = 2.0, with entries
corresponding to core curves marked with asterisks. D,, = dihedral group of order 2n; Si¢ = semidihedral
group of order 16, with presentation (z,y | 2% = y? = 1,y lzy = 23).
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Remarks on Table 1

1. E. Molndr [1992] computes the symmetry group
of manifold #1 as the group of outer automor-
phisms of its fundamental group. He finds it to
be Zy x D3 = Dg, in agreement with SnapPea’s

2. All these manifolds, except for #3, are chiral.

For #3, the surgery description displays only the
orientation-preserving symmetries. For the orien-
tation-reversing symmetries, do a full twist on the
(2,1) component and take the mirror image. See

calculation. also [Gorenstein 1968, Thm. 4.4].
1= WLM(3, 1) vol = 2.02988321 (Xl) 0.48121183 (>< 1) 1.66288589 + 2.39212379 %
H, =7 (><1) 1.08707014 + 1.72276845 1 (><4) 1.83178061 + 2.34978827 %
Isom = Zs (><3) 1.44363548 (X 1) 1.96497838 + 1.70869154 7
2= WLM(I, 2) vol = 2.56897060 (><1) 0.65450441 + 3.04403773 ¢ (><2) 1.57136773
H, =7 (><1) 0.75552584 (>< 1) 1.67747230 + 2.44874167 ¢
Isom = Zs (><1) 1.01953372 (X2) 1.95872229
(x2) 1.35092654 + 1.59574665 i
3= WLM(4, 1) vol = 2.66674478 (><1) 0.63297432 + 1.36217964 ¢ (X2) 1.67235274 + 2.25870430¢
Hi =7+ 7o (><1) 0.65847895 (X 1) 1.71593285 + 2.62768189 7
Isom = 7Z» (x1) 1.14621583 (x1) 1.90806357 + 0.64608883 i
(><2) 1.60863599 (><2) 1.97543685
4 = WLM(3, 2) vol = 2.82812209 (><1) 0.56239915 + 2.81543089 ¢ (X 1) 1.75331810 + 2.91070443 7
H =7 (x1) 0.62155734 (x2) 1.76640534
Isom = Z» (Xl) 1.20016235 (><2) 1.86467203
(x2) 1.53918373 + 1.83957682 i
5= WLM(5,1) vol = 2.98912028 (x1) 0.42347382 + 1.13005305 @ x2) 1.62011660 + 2.19496331 ¢
H, =7 (Xl) 0.74532073 X 1) 1.73774325 + 2.76577738 %
Tsom = 7, (x1) 1.03193587 x2) 1.76722808
6 = WLM(1,3) vol = 3.14850983 (x1) 0.31693581 + 2.05306079 x2) 1.44513337 + 1.80715330¢
H, =7 (Xl) 0.83274313 X 1) 1.74233607 + 2.80199757 ¢
Tsom = Z, (x1) 0.93173621 x2) 1.88440174
7= WLM(5,2) vol = 3.16396323 (x1) 0.33063552 + 2.74516418% x2) 1.57378049 + 2.04060973 ¢
H, =7 (Xl) 0.71540874 X 1) 1.76113786 + 3.04618408 %
Isom = Zs (><1) 1.06946994 ><2) 1.90350919
8 = WLM(6,1) vol = 3.17729328 (x1) 0.30468893 + 0.96535911 % x2) 1.59447927 + 2.15028807 ¢
Hi=7Z+74 (>< l) 0.79283563 X 1) 1.74828597 + 2.85569824 ¢
Isom = Zsy (><1) 0.97582913 ><2) 1.86973590
9 =WLM(2,3) vol = 3.17729328 (x1) 0.30468893 + 2.17623355 % x2) 1.46449605 + 1.83536048 ¢
Hi=7Z+74 (>< l) 0.79283563 X 1) 1.74828597 + 2.85569824 ¢
Isom = Zsy (><1) 0.97582913 ><2) 1.86973590
10 = WLM(4, 3) vol = 3.27587164 (><1) 0.25226126 + 1.94569043 ¢ ><2) 1.51270014 + 1.92571859 2
Hi=7Z+7, (Xl) 0.76061802 X 1) 1.76017564 + 3.02099168 7
Tsom = Z» (x1) 1.01341912 x2) 1.92982197

TABLE 2. Low-volume closed nonorientable hyperbolic three-manifolds, with same
the Chern—Simons invariant). For the notation WLM, see remarks on next page.

data as in Table 1 (minus

271
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3. All known surgery descriptions for manifold #3
involve negatively oriented tetrahedra, so SnapPea
cannot verify directly that the curves it drills out
are isotopic to the geodesics in their respective ho-
motopy classes. To make SnapPea’s results rigor-
ous, we computed a fundamental domain for this
manifold and manually drilled out the unique geo-
desic of length 1.31 ... (the old-fashioned way, with
pencil and paper) to check that its complement was
the same as the one SnapPea had found. This is
the only example in the tables for which SnapPea’s
algorithm failed. Among the 11,031 closed mani-
folds studied in [Hodgson and Weeks|, SnapPea’s
algorithm failed for four additional examples, but
in each case the correct symmetry group was found
with human assistance.

Remarks on Table 2

1. Unlike the results in Table 1, which are backed
by extensive and careful computer searches, the
manifolds in this table should be considered only
tentative candidates for the smallest closed nonori-
entable hyperbolic three-manifolds. All happen to
be Dehn fillings on a manifold, denoted WLM,
which is closely related to the Whitehead link com-
plement. WLM is nonorientable but has an ori-
entable cusp. The cusp shape is a 2:1 rectangle
(that is, its conformal invariant is 2i); the Dehn
fillings in the table are expressed relative to the

basis (short side, long side). The length of the core
curve is marked with an asterisk in the accompa-
nying length spectrum.

2. The smallest known nonorientable closed hy-
perbolic three-manifold has more than twice the
volume of the smallest orientable one. Cameron
Gordon has pointed out that this may be because a
nonorientable manifold has infinite homology, and
therefore contains a two-sided nonseparating in-
compressible surface (compare [Hempel 1976, Lem-
mas 6.6 and 6.7]). The closed manifolds obtained
by Dehn filling on WLM not only have the same
volumes as the cusped manifolds obtained by Dehn
filling on one cusp of the Whitehead link WL, but
the complex lengths of the surgery core curves also
coincide exactly. This is only one example of a
much broader correspondence between cusped and
closed manifolds that the authors are continuing to
explore. Manifolds #8 and #9 have the same vol-
ume and first homology group as the cusped mani-
folds WL(4, 1) and WL(4, —3), which are discussed
at length in [Hodgson et al. 1992].
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Hodgson and Weeks: Symmetries, Isometries and Length Spectra of Closed Hyperbolic Three-Manifolds 273

of Geometric Structures) for its support, and the
University of Melbourne for its hospitality during
the preparation of this manuscript.

REFERENCES

[Beardon 1983] A. Beardon, The Geometry of Discrete
Groups, Springer, New York, 1983.

[Conner and Raymond 1972] P. Conner and F. Ray-
mond, “Manifolds with few periodic homeomor-
phisms”, pp. 1-75 in Proc. Second Conf. Compact
Transformation Groups, Amherst, 1971, vol. 2, Lec-
ture Notes Math. 299, Springer, Berlin, 1972.

[Epstein and Penner 1988] D. B. A. Epstein and R.
Penner, “Euclidean decompositions of noncompact
hyperbolic manifolds”, J. Diff. Geom. 27 (1988), 67—
80.

[Gorenstein 1968] D. Gorenstein, Finite Groups, Harper
and Row, New York, 1968. Reprinted by Chelsea,
New York, 1980.

[Hempel 1976] J. Hempel, 3-Manifolds, Princeton Univ.
Press, Princeton, 1976.

[Henry and Weeks 1992] S. Henry and J. Weeks,
“Symmetry groups of hyperbolic knots and links”,
J. Knot Theory and its Ramifications 1 (1992), 185—
201.

[Hildebrand and Weeks 1989] M. Hildebrand and J.
Weeks, “A computer generated census of cusped
hyperbolic 3-manifolds”, pp. 53-59 in Computers and
Mathematics (edited by E. Kaltofen and S. Watt),
Springer, New York, 1989.

[Hodgson et al. 1992] C. Hodgson, R. Meyerhoff
and J. Weeks, “Surgeries on the Whitehead link
yield geometrically similar manifolds” pp. 195-206
in Topology ’90 (edited by B. Apanasov et al.), de
Gruyter, Berlin, 1992.

[Hodgson and Weeks] C. Hodgson and J. Weeks,
“A census of closed hyperbolic three-manifolds”, in
preparation.

[Kojima 1988] S. Kojima, “Isometry transformations
of hyperbolic three-manifolds”, Topology Appl. 29
(1988), 297-307.

[Molnar 1992] E. Molndr, “On isometries of space
forms”, pp. 509-534 in Differential Geometry and Its
Applications (Eger, 1989), North-Holland, Amster-
dam, 1992.

[Sakai 1991] T. Sakai, “Geodesic knots in a hyperbolic
3-manifold”, Kobe J. Math. 8 (1991), 81-87.

[Sakuma and Weeks 1995] M. Sakuma and J. Weeks,
“The generalized tilt formula”, Geometriae Dedicata
50 (1995), 1-9.

[Thurston 1979] W. Thurston, The Geometry and
Topology of Three-Manifolds, lecture notes, Prince-
ton University, 1979.

[Weeks 1993] J. Weeks, “Convex hulls and isometries
of cusped hyperbolic 3-manifolds”, Topology Appl. 52
(1993), 127-149.

[Weeks 1995] J. Weeks, SnapPea documentation.
The program and accompanying documentation are
available free of charge by anonymous ftp from
geom.umn. edu in directory pub/software/snappea,
or on a Macintosh diskette from Weeks.

ELECTRONIC AVAILABILITY

The authors have made a census of closed hyperbolic
three-manifolds that were obtained by Dehn filling on
a census of cusped hyperbolic three-manifolds [Hilde-
brand and Weeks 1989]. A full report on this census,
which totals 11,031 distinct manifolds, will appear in
[Hodgson and Weeks|. The symmetry groups of these
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