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Previously known algorithms to compute the symmetry group

of a cusped hyperbolic three-manifold and to test whether two

cusped hyperbolic three-manifolds are isometric do not apply

directly to closed manifolds. But by drilling out geodesics

from closed manifolds one may compute their symmetry groups

and test for isometries using the cusped manifold techniques.

To do so, one must know precisely how many geodesics of

a given length the closed manifold has. Here we prove the

propositions needed to rigorously compute a length spectrum,

with multiplicities. We also tabulate the symmetry groups of

the smallest known closed hyperbolic three-manifolds.

1. INTRODUCTIONA canonical cell decomposition lies at the foun-dation of algorithms for deciding whether or nottwo cusped hyperbolic three-manifolds are isomet-ric [Hildebrand andWeeks 1989] and for computingthe symmetry group of a cusped hyperbolic three-manifold [Henry and Weeks 1992]. The canonicalcell decomposition depends on a convex hull con-struction in Minkowski space [Epstein and Penner1988; Weeks 1993; Sakuma and Weeks 1995]. Thatconstruction makes essential use of a manifold'scusps, and does not generalize directly to closedmanifolds. Fortunately we can transfer questionsabout closed manifolds to questions about cuspedmanifolds by looking at the complement of a set ofdisjoint simple closed geodesics.Throughout this article, M will denote a hyper-bolic three-manifold of �nite volume. In this intro-duction we further assume thatM is closed. We donot assume it is orientable, because our results, aswell as the results we quote from [Kojima 1988] and
c
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[Sakai 1991], apply equally well to nonorientablemanifolds.
Definition. A geodesic link is a �nite set of closedgeodesics in M . A geodesic link is simple if itsconstituent geodesics do not intersect themselvesor each other.
Proposition 1.1 [Sakai 1991]. If M is a closed hy-perbolic manifold and L is a simple geodesic linkin M , the complement M n L admits a completehyperbolic structure of �nite volume.
Definition. The complex length of a closed geodesicis �+i�, where � is the geodesic's length and � is itstorsion. (See sidebar on page 263.) A geodesic linkL is complete if it has the property that, whenever�+ i� is the complex length of a geodesic in L, allgeodesics of complex length �� i� are in L.We denote by IsomM the group of isometries fromM to itself. We also refer to this as the symmetrygroup of M . By Mostow rigidity, IsomM is natu-rally isomorphic to the group of homeomorphismsfrom M to itself, up to homotopy.
Proposition 1.2 [Kojima 1988]. If L is a completesimple geodesic link in a closed hyperbolic three-manifoldM , the group IsomM is naturally isomor-phic to the subgroup of Isom(M n L) consisting ofsymmetries that take meridians to meridians (thatis, symmetries that extend to M).
Proof. This follows immediately from Lemma 5 andProposition 6 of [Kojima 1988]. The basic idea isthat a symmetry of M must preserve the completegeodesic link L, and therefore restricts to a homeo-morphism of M n L to itself. By Mostow rigidity,the homeomorphism is homotopic to an isometry.�This proposition lies at the heart of our method forcomputing the symmetry group of a closed hyper-bolic three-manifold M , which is, in outline, thefollowing (see Algorithm 2.4 for a fuller version):
Algorithm 1.3. Step 1. Find a complete simple geo-desic link L of M , and drill it out.

Step 2. Compute the symmetry group of M n Lusing the canonical cell decomposition mentionedabove, then take the subgroup of Isom(M nL) thatsends meridians to meridians. By Proposition 1.2,this subgroup is naturally isomorphic to IsomM .Unfortunately, at step 1 we have no proof thatM even contains a complete simple geodesic link,let alone an algorithm guaranteed to compute one.We do, however, have a heuristic that works verywell in practice. The heuristic, and the underlyingmathematics, are the main topic of this article.Step 2 is more straightforward: the canonicalcell decomposition mentioned at the beginning ofthis section is guaranteed to exist, and the algo-rithm that computes it will either succeed or runforever (so far it has always succeeded quickly, andindeed one may be able to construct a statisticalargument that it must eventually succeed). Giventhe canonical decomposition, it is straightfowardto compute Isom(M nL), and to check which of itselements preserve meridians.A similar technique allows us to test whether twoclosed hyperbolic three-manifolds M and M 0 areisometric: we drill corresponding complete geode-sic links out of bothM andM 0, then use canonicaldecompositions to check whetherM nL andM 0nL0are isometric by a meridian-preserving isometry.The computer program SnapPea [Weeks 1995]implements Algorithm 1.3, as well as other algo-rithms for creating and studying hyperbolic three-manifolds. The logical status of these algorithmsvaries: some are rigorous and guaranteed to pro-duce correct results in a �nite number of steps;others, like the one just described, are heuristicsthat work well in practice but could in principlefail; still others, like the length spectrum algo-rithm described in Section 3 below, are rigorous inthe strict mathematical sense, but in practice aresubject to the limitations of �xed-precision 
oatingpoint computations.The rest of this paper is structured as follows.Section 2 discusses our heuristics for �nding a com-plete simple geodesic link, �rst presenting the basic
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ISOMETRIES OF H 3The classi�cation of orientation-preserving isometries of hyperbolic three-space H 3 , and their relation to elementsof PSL(2; C ), is very well-known (see [Beardon 1983, Section 4.3], for example). The classi�cation of orientation-reversing isometries is less familiar, so we outline it here for convenience, showing how geometric informationcan be derived from algebraic data.Recall that Minkowski space E 3;1 is R 4 with a quadratic form v of signature (3; 1), which we take as v(x; y) =�u0v0+u1v1+u2v2+u3v3 for concreteness. H 3 has a natural embedding in E 3;1 as either of the two sheets of thehyperboloid jvj = �1. The isometry group O(3; 1) of E 3;1 has a subgroup O+(3; 1) of index two that preserveseach sheet, and which can be regarded as the isometry group of H 3 . Further, O+(3; 1) has two components,consisting respectively of orientation-preserving and orientation-reversing transformations.An orientation-preserving transformation that is not the identity �xes either one or two points at in�nity(isotropic vectors of v up to scalar multiplication). If there is one �xed point at in�nity, the transformationis parabolic. If there are two, the transformation is elliptic if it has �xed points in H 3 itself and hyperbolicotherwise (we do not distinguish between screw motions and translations). By conjugation, we can reduce anyorientation-preserving transformation to one of the following forms:identity parabolic elliptic hyperbolic0B@ 1 0 0 00 1 0 00 0 1 00 0 0 1
1CA 0BB@ 32 � 12 1 012 12 1 01 �1 1 00 0 0 1

1CCA 0B@ 1 0 0 00 1 0 00 0 cos � � sin �0 0 sin � cos �
1CA 0B@ cosh� sinh� 0 0sinh� cosh� 0 00 0 cos � � sin �0 0 sin � cos �

1CA
Conjugacy classes of hyperbolic and elliptic orientation-preserving isometries, taken together, form a two-parameter family, parametrized by the complex number �+ i� (de�ned modulo 2�i). This number is called thecomplex length associated with the transformation, and also the complex length of the corresponding geodesicin the quotient manifold; it equals 2 arccosh( 12 tr), where tr is the complex-valued trace of the correspondingmatrix in PSL(2; C ) (which is determined up to sign).An orientation-reversing transformation g always leaves some plane P globally invariant. By composing withre
ection in that plane, we reduce to an orientation-preserving transformation f that leaves the same planeinvariant. Therefore f is elliptic, parabolic, or hyperbolic with � = 0, and we assign g the same type as f , unlessg is a pure re
ection in a plane orthogonal to P (in which case f is elliptic with � = 180�). A pure re
ectionmay be considered a degenerate isometry of any of the three types. Thus, by conjugation, we can reduce anyorientation-reversing transformation to one of the following forms:pure re
ection parabolic elliptic hyperbolic0B@ 1 0 0 00 �1 0 00 0 1 00 0 0 1

1CA 0BB@ 32 � 12 1 012 12 1 01 �1 1 00 0 0 �1
1CCA 0B@ 1 0 0 00 �1 0 00 0 cos � � sin �0 0 sin � cos �

1CA 0B@ cosh� sinh� 0 0sinh� cosh� 0 00 0 1 00 0 0 �1
1CA

We see that hyperbolic and elliptic orientation-reversing isometries form separate one-parameter families,parametrized up to conjugacy by the real length � or the rotation angle �. Here too we call �+ i� the complexlength associated with the transformation. These numbers are determined by the trace of the transformation'smatrix in O(3; 1): this can be seen by inspecting the standard forms just given and using the fact that thetrace is a conjugacy invariant. Thus we can read geometric information o� the matrix, as follows. An orienta-tion-reversing transformation of trace less than 2 is an elliptic isometry of rotation angle � = arccos( 12 tr), andan orientation-reversing transformation of trace greater than 2 is an hyperbolic isometry of translation distance� = arccosh( 12 tr). An orientation-reversing transformation of trace 2 may be either parabolic or a pure re
ection.
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idea and then elaborating as shortcomings of thatidea become obvious. Inasmuch as the heuristicshave been implemented in SnapPea, we frame thediscussion in terms of SnapPea's capabilities andalgorithms, but the theoretical results that accom-pany this discussion should make it clear that thealgorithms are independent of any particular im-plementation.In Section 3 we present a rigorous algorithm forcomputing how many geodesics of a given complexlength appear in the manifold, a computation thatis required by the heuristic algorithm of Section 2.Finally, Section 4 lists the results of the appli-cation of this paper's techniques to a number ofclosed hyperbolic three-manifolds of small volume.
2. FINDING A COMPLETE SIMPLE GEODESIC LINKThe only curves that SnapPea can drill out arethose that embed in the dual one-skeleton of a tri-angulation representing a given manifold. Snap-Pea prepares a list of all such curves, giving thecomplex length of the unique geodesic in each ho-motopy class, and the user (who may be either ahuman or another computer program) says whichcurve he, she or it would like drilled out. To drillout a complete simple geodesic link, we ask Snap-Pea to successively drill out several curves of thesame length. However, several pitfalls await us.
(a) A desired geodesic may not be homotopic to anysimple closed curve in the dual one-skeleton, inwhich case we can't drill it out.
(b) A curve in the dual one-skeleton may be homo-topic, but not isotopic, to a desired geodesic. Inthis case SnapPea will drill out a curve in thewrong isotopy class.
(c) Even if we avoid (a) and (b) and successfullydrill out a complete simple geodesic link, wewon't know a priori that we've done so.We can avoid pitfall (c) if we know in advance howmany curves of a given complex length our mani-fold contains. In Section 3 we will present resultsthat allow us to compute a length spectrum with

multiplicities, so SnapPea is able to successfullydeal with (c).As for pitfall (b), when we drill out a curve inthe wrong isotopy class, we still obtain some usefulinformation. If L0 is a link that is homotopic butnot isotopic to the desired geodesic link L, andif M n L0 is hyperbolic, the group Isom(M n L0)will be a subgroup of IsomM . Roughly speaking,every symmetry ofM nL0 that preserves meridianson the boundary extends to a symmetry ofM , butnot every symmetry of M restricts to a symmetryof M n L0.
Proposition 2.1. If L0 is a set of nonintersecting (notnecessarily geodesic) simple closed curves in M ,and if M nL0 is hyperbolic, the subgroup of isome-tries of M n L0 that sends meridians to meridiansinjects naturally into IsomM .
Proof. This follows from an observation of Sakuma,quoted in the proof of [Kojima 1988, Prop. 6].A theorem of Borel [Conner and Raymond 1972]states that if G is a �nite group acting e�ectivelyon a closed aspherical manifold M and �1(M) hastrivial center, the induced homomorphism from Gto Out�1(M) is injective. So let G be the subgroupof Isom(M n L0) that sends meridians to merid-ians, and then apply Mostow rigidity to equateOut�1(M) with IsomM . �Roughly speaking, Isom(M n L0) gives us a lowerbound on the symmetry group IsomM . Our strat-egy is to look for an upper bound on the orderof IsomM . If our upper bound equals the orderof Isom(M n L0), we know that Isom(M n L0) =IsomM .To obtain an upper bound, we have SnapPeadrill out a simple closed curve K from the dualone-skeleton of the given triangulation of M . Itfollows from Thurston's theory of hyperbolic Dehn�lling [Thurston 1979, Ch. 4] that, if the hyper-bolic structure on M is the metric completion ofan incomplete hyperbolic structure on M nK tri-angulated by positively oriented ideal tetrahedra,the curve K must be isotopic to a geodesic. In
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this case, Proposition 2.2 below lets us computethe subgroup of IsomM that preserves the uniquegeodesic isotopic to K, and Proposition 2.3 thengives us an upper bound on jIsomM j.Let Isom(M;L) be the subgroup of IsomM thatpreserves a geodesic link L.
Proposition 2.2 [Kojima 1988]. Let M be a closedhyperbolic three-manifold . If L is a (not necessar-ily complete) simple geodesic link in M , the groupIsom(M;L) is naturally isomorphic to the subgroupof Isom(M nL) that takes meridians to meridians.
Proof. Just like Proposition 1.2, this follows from[Kojima 1988, Lemma 5 and Prop. 6]. �
Proposition 2.3. Let K be a simple geodesic knot inM with complex length �+i�, and let n be the num-ber of closed geodesics of M with complex length�� i�. Then jIsomM j � n jIsom(M;K)j.
Proof. Let S be the set of closed geodesics withcomplex length �� i�. Symmetries of M preservelength and absolute value of torsion for geodesics,so the group IsomM acts on S. The stabilizer ofK is Isom(M;K), so the orbit of K has order equalto jIsomM j = jIsom(M;K)j � jSj = n. �In summary, here is our procedure for computingsymmetry groups of closed hyperbolic manifolds,as implemented in SnapPea:
Algorithm 2.4 (Computing symmetry groups).

Input: A closed hyperbolic manifold M.
Output: The symmetry group of M, or failure.� Compute the length spectrum of M up to somemaximum length � (see Section 3; for low-volumemanifolds � = 1:5 works well).� For each complex length in the length spectrum:� Try to drill out a single curve K of that com-plex length.� If M can be recovered as a hyperbolic Dehn�lling on M n K with all positively orientedtetrahedra, apply Proposition 2.3 to obtain anupper bound on jIsomM j.� Try to drill out the complete geodesic link Lconsisting of all curves of the given length and

absolute value of torsion. If this is possible, useProposition 2.1 to obtain a lower bound on theorder of IsomM .� If the best lower bound equals the least upperbound, the best lower bound is indeed jIsomM j.� Else, return failure.Note that the algorithm may fail to drill out the de-sired curves at any step (see pitfall (a) on the pre-ceding page). Even if it does drill out the desiredcurves, the presence of negatively oriented tetra-hedra may prevent us from establishing an upperbound on the order of jIsomM j. Nevertheless, thealgorithm works well in practice: it successfullycomputes the symmetry group of all but �ve of the11,031 distinct low-volume closed hyperbolic three-manifolds studied in [Hodgson and Weeks]. Theauthors have computed the symmetry groups ofthe �ve exceptional cases using ad hoc techniques.
Question. Do all closed hyperbolic three-manifoldscontain a complete simple geodesic link?
3. LENGTH SPECTRAAs explained in Section 1, to drill out a completesimple geodesic link we need to know how manygeodesics of a given complex length appear in M .In other words, we need a length spectrum withmultiplicities. The remainder of this section ex-plains SnapPea's algorithm for rigorously comput-ing such a length spectrum.
Notation. Throughout this section M represents ahyperbolic three-dimensional manifold or orbifoldof �nite volume, and x 2 H 3 is an arbitrary base-point in the universal cover H 3 of M . If M isan orbifold, we assume that x does not lie in thepreimage of the singular set (that is, x is not a�xed point of any covering transformation).The key idea is to begin with a Dirichlet domainfor M . We recall the de�nition. For each coveringtransformation g of M , let Hg be the half-spaceconsisting of points at least as close to x as to gx:Hg = fp 2 H 3 j d(p; x) � d(p; gx)g:
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The Dirichlet domain D of M (with basepoint x)is the intersection of the Hg for all covering trans-formations g. BecauseM is geometrically �nite, Dis a �nite-sided polyhedron. IfM is a noncompact,some of the vertices of D will be ideal points on thesphere at in�nity.
Remark. A choice of basepoint x such that the dis-tance d(x; gx) from x to its nearest translate ismaximal typically leads to a more symmetrical Di-richlet domain, and also to a smaller spine radius(discussed below). However, all results in this sec-tion are valid for any choice of basepoint.For the present purposes we assume given a Dirich-let domain. SnapPea computes Dirichlet domainsusing an algorithm that usually succeeds, but canfail for large manifolds because of the rapidly accu-mulating round-o� errors inherent in matrix mul-tiplication in O(3; 1). (For a brief explanation ofthis algorithm, see [Hodgson and Weeks]. A moredetailed exposition may appear later; meanwhileone may consult the extensive documentation inthe �les Dirichlet.c, Dirichlet.h, Dirichletbasepoint.c and Dirichlet construction.c in[Weeks 1995].)Let D be a Dirichlet domain for M with base-point x. A typical translate of D will be denotedgD, where g is an isometry in the group of coveringtransformations.We'll tile an approximate ball in H 3 with trans-lates gD of D. Each primitive hyperbolic isom-etry g corresponds to a translation along a geo-desic, perhaps followed by a rotation or re
ection�xing the geodesic pointwise. (See the sidebar onpage 263.)We'd like to �nd all translates gD ofD that movethe basepoint x a distance less than some givendistance s, that is, all gD such that d(x; gx) <s. The simplest algorithm is to start with D andrecursively attach its neighbors, stopping the re-cursion when we reach translates gD that movethe basepoint a distance greater than s|that is,when d(x; gx) > s. For an arbitrary fundamentaldomain (not necessarily a Dirichlet domain) with

an arbitrary basepoint, this algorithm might fail:there could be a translate moving the basepoint adistance less than s, all of whose neighbors movethe basepoint a distance greater than s. The sim-ple recursive algorithm would not �nd such a trans-late. Fortunately this cannot occur for a Dirichletdomain.
Proposition 3.1. Let D be a Dirichlet domain withbasepoint x, and let gD be a translate of D suchthat d(x; hx) � d(x; gx) for all neighbors hD ofgD. Then g is the identity .
Proof. For each neighbor hD of gD, the inequalityd(x; hx) � d(x; gx) implies that x lies in the half-space Hh consisting of points closer to gx than hx.But gD is the intersection of all such Hh, so xmust lie in gD. Our assumption that no coveringtransformation �xes x implies that no translate gDcontains x, except for D itself. Therefore gD = D,and g is the identity. �If we want to �nd all geodesics of length at most�, to what radius s must we tile H 3? The answerto this question depends not only on �, but alsoon the size of the Dirichlet domain. The relevantmeasure of size is the \spine radius", which we areabout to de�ne. Proposition 3.3 provides a practi-cal means of computing the spine radius. Proposi-tion 3.4 then expresses the required tiling radius sin terms of the spine radius r and the cuto� length�.To introduce the spine radius, we observe thatthe Dirichlet domain D, with faces identi�ed, de-�nes a cell decomposition K for M . Let K 0 be acell decomposition of M dual to K, including the\three-cells" dual to any ideal vertices of K. Thetwo-skeleton of K 0 is a spine dual to the Dirichletdomain.
Proposition 3.2. A spine dual to the Dirichlet do-main must intersect every closed geodesic of M .
Proof. Let K and K 0 be as above. The three-cellsof K 0 are in one-to-one correspondence with thevertices of K. If M is a manifold, each three-cell
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of K 0 will be either a topological ball (if the cor-responding vertex of K is �nite) or a topologicaltorus or Klein bottle cross a half line (if the corre-sponding vertex of K is ideal). IfM is an orbifold,a three-cell dual to a �nite vertex may be a coneon any spherical two-orbifold, and a three-cell dualto an in�nite vertex may be any Euclidean two-orbifold cross a half line. We know the three-cellsmust take this form because the singular set (ifany) must be contained in the Dirichlet domain'sboundary; this follows from our assumption thatthe basepoint x does not lie in the preimage of thesingular set. It follows that no geodesic may lieentirely in a single three-cell of K 0, since it wouldthen be contractible (or perhaps boundary parallelif M has cusps). Therefore every geodesic mustintersect the two-skeleton. �
Definition. The radius of a spine dual to a Dirichletdomain is the maximum distance from a point inthe spine to the basepoint. The Dirichlet domain'sspine radius is the in�mum of the radii of all spinesdual to the domain.The following de�nition is local to the next propo-sition. The maximin edge distance of a Dirichletdomain is the maximum over all the domain's edgesof the minimum distance from the edge to the base-point x.
Proposition 3.3. The spine radius is the maximinedge distance.
Proof. Any spine dual to the Dirichlet domain mustintersect every edge, so the spine radius is greaterthan or equal to the maximin edge distance. Itremains to show that for any " greater than zero,we can construct a spine whose radius is within" of the maximin edge distance. Carry out thefollowing construction in the Dirichlet domain D(not the space M obtained by identifying faces),replacing " by a smaller value if necessary.
Step 1. On each edge, mark the point closest to thebasepoint. If that point is at an endpoint, displaceit a distance " into the interior of the edge. Theedge identi�cations respect the marked points, and

the marked points all lie within the maximin edgedistance plus " of the basepoint.
Step 2. On each face, mark the point closest tothe basepoint. If that point is on the boundary,displace it a distance " into the interior of the face(towards the center, say). The face identi�cationsrespect the marked points, and the marked pointsall lie within the maximin edge distance plus " ofthe basepoint.
Step 3. Draw lines from the marked point in theinterior of each face to the marked points on theincident edges. The face identi�cations respect thelines, and the lines all lie within the maximin edgedistance plus " of the basepoint.
Step 4. Cone the complex created in steps 1{3 tothe basepoint. This gives a spine dual to the Di-richlet domain and lying within the maximin edgedistance plus " of the basepoint. �Note that the spine radius is �nite even for Di-richlet domains of cusped manifolds, whose radiusis in�nite. As already mentioned, the techniquesof this section work to compute length spectra forcusped manifolds as well as closed ones.
Remark. In practice, in order to improve perfor-mance, SnapPea removes certain two-cells from thespine to reduce its radius without compromisingthe fact that every geodesic must intersect it. Thismodi�cation does not a�ect the basic theory.For the remainder of this section, we denote by rthe spine radius of the Dirichlet domain D.
Proposition 3.4. To �nd all closed geodesics of lengthat most �, it su�ces to �nd all translates gD suchthat d(x; gx) � �+ 2r.
Proof. For each closed geodesic 
 of length at most�, we must �nd a covering transformation g whoseaxis is a preimage of the geodesic 
 and which sat-is�es d(x; gx) < �+ 2r.Choose " > 0, and construct a spine S dual toD with radius at most r + ". (See Figure 1.) By
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FIGURE 1. The distance from x to gx is at mostr + �+ r, where � is the translation length of g.Proposition 3.2, a lift of the geodesic 
 must in-tersect S at some point P . Let g be the cover-ing transformation corresponding to this lift of 
.Then d(P; gP ) = length g, andd(x; gx) � d(x; P ) + d(P; gP ) + d(gP; gx)� (r + ") + �+ (r + ") = �+ 2r + 2":Let " go to zero to obtain d(x; gx) � �+ 2r. �With a little extra care, we can improve on theestimate of �+ 2r.
Proposition 3.5. To �nd all closed geodesics of lengthat most �, it su�ces to �nd all translates gD suchthat d(x; gx) � 2 cosh�1(cosh r cosh( 12�)).
Proof. Same as that of Proposition 3.4, except thatinstead of using a point P where 
 intersects thespine, we use a point Q at which the distance from
 to the basepoint x is a minimum (Figure 2). Forall choices of " and S we have d(x;Q) � d(x; P ) �r + ", so d(x;Q) � r. The advantage of usingQ instead of P is that the segment from x to Qis orthogonal to the geodesic 
. If we let M bethe midpoint of the segment from Q to gQ we canuse hyperbolic trigonometry to bound the distancefrom x toM as d(x;M) � cosh�1(cosh r cosh( 12�)).The distance from x to 
x will be at most twicethat. �
Remark. Empirical tests show that for small mani-folds the length spectrum computation runs about

x gxM
Q

gQ

D gD
� r � 12�

FIGURE 2. The distance from x to gx is at most2 cosh�1(cosh r cosh( 12�)).�ve times faster with the bound of Proposition 3.5than with that of Proposition 3.4. Theoretical es-timates predict that, as r and � go to in�nity, therun-time di�erence approaches a factor of 16.Proposition 3.5 tells us how to �nd group elementscorresponding to all geodesics of length at most�. But di�erent groups elements may be conju-gate to one another and correspond to the samegeodesic. To �nd a length spectrum with correctmultiplicities, we must �nd precisely one group el-ement in each conjugacy class. The following al-gorithm does that; in its statement, the big listis the complete set of group elements g satisfyingd(x; gx) � 2 cosh�1(cosh r cosh( 12�)), and the smalllist is a subset of the big list that gets whittleddown until precisely one element of each conjugacyclass remains.
Algorithm 3.6 (Removing duplicates).

(Initialize) Set the small list equal to the big list.
Step 1. Remove group elements whose correspond-ing complex lengths have real part zero. If M is amanifold these elements will be parabolic, but ifMis an orbifold elliptics may also occur. Also removegroup elements of real length greater than �.
Step 2. Remove group elements whose axes don'tpass within a distance r of the basepoint. (Everygeodesic must intersect a spine of radius r + ", forall " > 0, so we are sure to retain at least oneelement in every conjugacy class.)
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Step 3. Remove group elements that are powers ofothers. We aren't interested in a \geodesic" thatis just a shorter geodesic traversed twice.
Step 4. Check which of the elements remaining onthe small list are conjugate to one another. Propo-sition 3.7 below ensures that if two elements of thesmall list are conjugate to each other, the conju-gacy is realized by an element from the big list.That is, if two elements g1 and g2 on the small listare conjugate, there exists an element h on the biglist such that g1 = hg2h�1. Keep precisely one ele-ment corresponding to each geodesic, and discardits conjugates, its inverse, and the conjugates of itsinverse. (In a manifold an element and its inversewill be in di�erent conjugacy classes, but in an orb-ifold they may be in the same conjugacy class, inwhich case the geodesic is topologically a mirroredinterval rather than a circle.)The resulting small list yields a length spectrumwith correct multiplicities.
Proposition 3.7. If g1 and g2 are conjugate group ele-ments corresponding to a geodesic of length at most�, and both their axes pass within a distance r ofthe basepoint , then there is a group element h suchthat g1 = hg2h�1 andd(x; hx) � 2 cosh�1(cosh r cosh( 14�)):
Proof. Let Ai be the axis of gi, and Qi be thepoint on Ai closest to the basepoint x. (See Figure3.) There are in�nitely many covering transfor-mations taking A1 to A2; let h be one that mini-mizes the distance from hQ1 to Q2. Because thelength of the underlying geodesic is at most �, thedistance from hQ1 to Q2 is at most 12� (if instead12� < d(hQ1; Q2) < � we got the wrong h|we needto consider an h that takes Q1 to a point on theother side of Q2). Now imitate the proof of Propo-sition 3.5 to get the desired bound for d(x; hx). �The bound on d(x; hx) in Proposition 3.7 is lessthan the bound on d(x; gx) in Proposition 3.5. Thisimplies that, as claimed, the big list contains all

x
hx hD� r Q2

hQ1� r

A1
Q1 A2� 12�

FIGURE 3. The distance from x to hx is at most2 cosh�1(cosh r cosh( 14�)).the conjugating matrices we could possibly need inStep 4 of the above algorithm.
Remark. The methods of this section may also beapplied to compute the based ortholength spec-trum associated to a �xed geodesic.
4. EXAMPLESKnowing the lengths and multiplicities of the short-est geodesics, we applied the technique outlined inSection 1 to compute the symmetry groups of thesmallest known closed hyperbolic three-manifolds,which are part of a census of closed hyperbolicthree-manifolds described in [Hodgson and Weeks](see also the section on Electronic Availability atthe end of the text).Table 1 gives the results for the ten smallestmanifolds. Table 2 provides examples of closednonorientable hyperbolic three-manifolds, and Ta-ble 3 lists length spectra for some sample orbifolds(although the results of Section 3 apply to orbifoldsas well as manifolds, we cannot in general computethe symmetry group of an orbifold).On a Macintosh SE/30, each length spectrumcomputation took about 30 seconds. The othercomputations were almost instantaneous.
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1
�3; 2

�3; 2�3; 2 vol = 0:94270736 (�3) 0:58460369 + 2:49537046 i � (�3) 1:28985116 + 2:48392462 iCS = 0:06004307 (�3) 0:79413466� 2:30485682 iH1 = Z5 + Z5Isom = D62
5; 1

vol = 0:98136883 (�1) 0:57808244 + 2:13243064 i (�1) 1:04031513 + 0:98237189 iCS = 0:07703818 (�1) 0:72156837� 1:15121299 i � (�2) 1:79380084� 1:55687105 iH1 = Z5 (�2) 0:88944300 + 2:94185905 i (�1) 1:82227970� 2:41353903 iIsom = D2 (�2) 0:99832519� 2:92101779 i3 2; 11; 1
1; 1

1;�1 1;�1 vol = 1:01494161 (�2) 0:83144295� 1:94553076 i (�1) 1:31695790 + 3:14159265 i �CS = 0 (�2) 0:83144295 + 1:94553076 i (�2) 1:99165239� 1:29953257 iH1 = Z3 + Z6 (�2) 0:86255463� 2:68067319 i � (�2) 1:99165239 + 1:29953257 iIsom = S16 (�2) 0:86255463 + 2:68067319 i �4
5;�1

5;�1 vol = 1:26370924 (�2) 0:57507858 + 1:74532235 i � (�2) 1:80421804� 1:52234769 iCS = 0:11414066 (�2) 0:66683593� 2:82503375 i (�2) 1:81598680 + 2:23627048 iH1 = Z5 + Z5 (�4) 1:16858110 + 2:63105912 iIsom = D45
6; 1

vol = 1:28448530 (�1) 0:48031180� 0:93377666 i � (�1) 1:44093541� 2:80132997 iCS = 0:06793167 (�1) 0:75757225 + 2:06174612 i (�1) 1:51514450� 2:15969307 iH1 = Z6 (�2) 1:14870610 + 2:85490514 i (�1) 1:56188878 + 1:21107398 iIsom = D2 (�1) 1:26692640 + 1:02808709 i (�1) 1:90657583� 1:45364261 i(�2) 1:36531695� 2:95884090 i6
1; 2

vol = 1:39850888 (�1) 0:36613070 + 3:11358994 i � (�2) 1:69233833� 1:75385127 iCS = �0:24660725 (�1) 0:90689558 + 1:35222273 i (�1) 1:77974117 + 0:58862018 iH1 = trivial (�1) 1:07293593� 1:29048759 i (�1) 1:90415991� 0:62376635 iIsom = D2 (�2) 1:43906664 + 1:82310235 i7
6; 1

vol = 1:41406104 (�1) 0:79413466� 2:30485682 i (�1) 1:18953767� 2:75480329 iCS = �0:07660207 (�1) 0:84359872 + 1:40771544 i (�2) 1:23287808� 2:96153066 iH1 = Z6 (�1) 0:85397176� 0:88606928 i � (�2) 1:35182743 + 2:71567536 iIsom = D2 (�1) 1:08957507 + 1:70114752 i (�1) 1:96236424� 0:66176633 i8
5;�1

2; 1 vol = 1:41406104 (�1) 0:36489469� 1:62824351 i � (�1) 1:16920737� 1:29244440 iCS = �0:11826873 (�1) 0:84359872 + 1:40771544 i � (�1) 1:70794352 + 1:36945410 iH1 = Z10 (�2) 0:85802126� 2:84667560 i (�1) 1:82127130� 0:51794798 iIsom = D2 (�2) 0:98118212 + 2:81070949 i (�2) 1:86598419 + 2:11045463 i9
5;�1

7;�3 vol = 1:42361190 (�1) 0:35237160� 1:75553066 i � (�1) 1:22377342� 2:11754199 iCS = �0:11256515 (�2) 0:72219447� 2:56160460 i (�2) 1:74409578� 2:80561863 iH1 = Z35 (�2) 0:83247810 + 2:48715981 i (�2) 1:75039321� 2:25499321 iIsom = D2 (�1) 0:96132230 + 2:08327469 i � (�2) 1:86082909 + 1:79430243 i10
3; 2

vol = 1:44069901 (�1) 0:36152158 + 3:05182035 i � (�1) 1:65279232 + 0:60455578 iCS = �0:24006071 (�1) 0:79662309 + 1:47505982 i (�2) 1:73929436 + 2:21381084 iH1 = Z3 (�2) 1:25897223 + 1:99299289 i (�2) 1:97217761� 1:82481627 iIsom = D2 (�1) 1:26705358� 1:32270789 i
TABLE 1. For each of the ten smallest known closed hyperbolic three-manifolds, all of which are orientable, wegive: a surgery description that embodies the manifold's full symmetry group; the volume; the Chern{Simonsinvariant (mod 12 ); the �rst homology; the symmetry group; and the length spectrum to � = 2:0, with entriescorresponding to core curves marked with asterisks. Dn = dihedral group of order 2n; S16 = semidihedralgroup of order 16, with presentation hx; y j x8 = y2 = 1; y�1xy = x3i.
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Remarks on Table 1

1. E. Moln�ar [1992] computes the symmetry groupof manifold #1 as the group of outer automor-phisms of its fundamental group. He �nds it tobe Z2 � D3 � D6, in agreement with SnapPea'scalculation.
2. All these manifolds, except for #3, are chiral.For #3, the surgery description displays only theorientation-preserving symmetries. For the orien-tation-reversing symmetries, do a full twist on the(2; 1) component and take the mirror image. Seealso [Gorenstein 1968, Thm. 4.4].

1 = WLM(3; 1) vol = 2:02988321 (�1) 0:48121183 (�1) 1:66288589 + 2:39212379 iH1 = Z (�1) 1:08707014 + 1:72276845 i � (�4) 1:83178061 + 2:34978827 iIsom = Z2 (�3) 1:44363548 (�1) 1:96497838 + 1:70869154 i2 = WLM(1; 2) vol = 2:56897060 (�1) 0:65450441 + 3:04403773 i � (�2) 1:57136773H1 = Z (�1) 0:75552584 (�1) 1:67747230 + 2:44874167 iIsom = Z2 (�1) 1:01953372 (�2) 1:95872229(�2) 1:35092654 + 1:59574665 i3 = WLM(4; 1) vol = 2:66674478 (�1) 0:63297432 + 1:36217964 i � (�2) 1:67235274 + 2:25870430 iH1 = Z + Z2 (�1) 0:65847895 (�1) 1:71593285 + 2:62768189 iIsom = Z2 (�1) 1:14621583 (�1) 1:90806357 + 0:64608883 i(�2) 1:60863599 (�2) 1:975436854 = WLM(3; 2) vol = 2:82812209 (�1) 0:56239915 + 2:81543089 i � (�1) 1:75331810 + 2:91070443 iH1 = Z (�1) 0:62155734 (�2) 1:76640534Isom = Z2 (�1) 1:20016235 (�2) 1:86467203(�2) 1:53918373 + 1:83957682 i5 = WLM(5; 1) vol = 2:98912028 (�1) 0:42347382 + 1:13005305 i � (�2) 1:62011660 + 2:19496331 iH1 = Z (�1) 0:74532073 (�1) 1:73774325 + 2:76577738 iIsom = Z2 (�1) 1:03193587 (�2) 1:767228086 = WLM(1; 3) vol = 3:14850983 (�1) 0:31693581 + 2:05306079 i � (�2) 1:44513337 + 1:80715330 iH1 = Z (�1) 0:83274313 (�1) 1:74233607 + 2:80199757 iIsom = Z2 (�1) 0:93173621 (�2) 1:884401747 = WLM(5; 2) vol = 3:16396323 (�1) 0:33063552 + 2:74516418 i � (�2) 1:57378049 + 2:04060973 iH1 = Z (�1) 0:71540874 (�1) 1:76113786 + 3:04618408 iIsom = Z2 (�1) 1:06946994 (�2) 1:903509198 = WLM(6; 1) vol = 3:17729328 (�1) 0:30468893 + 0:96535911 i � (�2) 1:59447927 + 2:15028807 iH1 = Z + Z4 (�1) 0:79283563 (�1) 1:74828597 + 2:85569824 iIsom = Z2 (�1) 0:97582913 (�2) 1:869735909 = WLM(2; 3) vol = 3:17729328 (�1) 0:30468893 + 2:17623355 i � (�2) 1:46449605 + 1:83536048 iH1 = Z + Z4 (�1) 0:79283563 (�1) 1:74828597 + 2:85569824 iIsom = Z2 (�1) 0:97582913 (�2) 1:8697359010 = WLM(4; 3) vol = 3:27587164 (�1) 0:25226126 + 1:94569043 i � (�2) 1:51270014 + 1:92571859 iH1 = Z + Z2 (�1) 0:76061802 (�1) 1:76017564 + 3:02099168 iIsom = Z2 (�1) 1:01341912 (�2) 1:92982197
TABLE 2. Low-volume closed nonorientable hyperbolic three-manifolds, with same data as in Table 1 (minusthe Chern{Simons invariant). For the notation WLM, see remarks on next page.
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3. All known surgery descriptions for manifold #3involve negatively oriented tetrahedra, so SnapPeacannot verify directly that the curves it drills outare isotopic to the geodesics in their respective ho-motopy classes. To make SnapPea's results rigor-ous, we computed a fundamental domain for thismanifold and manually drilled out the unique geo-desic of length 1:31 : : : (the old-fashioned way, withpencil and paper) to check that its complement wasthe same as the one SnapPea had found. This isthe only example in the tables for which SnapPea'salgorithm failed. Among the 11,031 closed mani-folds studied in [Hodgson and Weeks], SnapPea'salgorithm failed for four additional examples, butin each case the correct symmetry group was foundwith human assistance.
Remarks on Table 2

1. Unlike the results in Table 1, which are backedby extensive and careful computer searches, themanifolds in this table should be considered onlytentative candidates for the smallest closed nonori-entable hyperbolic three-manifolds. All happen tobe Dehn �llings on a manifold, denoted WLM,which is closely related to the Whitehead link com-plement. WLM is nonorientable but has an ori-entable cusp. The cusp shape is a 2:1 rectangle(that is, its conformal invariant is 2i); the Dehn�llings in the table are expressed relative to the

basis (short side, long side). The length of the corecurve is marked with an asterisk in the accompa-nying length spectrum.
2. The smallest known nonorientable closed hy-perbolic three-manifold has more than twice thevolume of the smallest orientable one. CameronGordon has pointed out that this may be because anonorientable manifold has in�nite homology, andtherefore contains a two-sided nonseparating in-compressible surface (compare [Hempel 1976, Lem-mas 6.6 and 6.7]). The closed manifolds obtainedby Dehn �lling on WLM not only have the samevolumes as the cusped manifolds obtained by Dehn�lling on one cusp of the Whitehead link WL, butthe complex lengths of the surgery core curves alsocoincide exactly. This is only one example of amuch broader correspondence between cusped andclosed manifolds that the authors are continuing toexplore. Manifolds #8 and #9 have the same vol-ume and �rst homology group as the cusped mani-folds WL(4; 1) and WL(4;�3), which are discussedat length in [Hodgson et al. 1992].
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