
Gene organization and evolutionary history
Transient receptor potential (TRP) genes were first des-
cribed in the fruit fly Drosophila melanogaster. Studies in 
its visual system identified a visually impaired mutant fly 
that had a transient response to steady light instead of the 
sustained electro-retinogram recorded in the wild type 
[1]. �is mutant was therefore called transient receptor 
potential; however, it took about two decades before the 
trp gene was identified by Montell and Rubin in 1989 [2]. 
From its structural resemblance to other cation channels 
and detailed analysis of the permeation properties of the 
light-induced current in the trp mutant, the product of 
the trp gene was proposed to be a six-transmembrane-
segment protein that functions as a Ca2+-permeable 
cation channel [3]. Currently, more than 100 TRP genes 
have been identified in various animals (Table 1). Human 
TRP genes are diverse in length and range between 11.4 
and about 911 kb, with the number of exons varying from 
11 to 39. �e overall protein sequence homology between 
subfamily members in the same species is usually about 
35%, but for clear duplication pairs (such as TRPC6 and 
TRPC7, TRPM4 and TRPM5, and TRPV5 and TRPV6) 
this may reach 50 to 80%. Regulatory elements in pro-
moters of TRP genes have not been identified.

From protein homology, members of the TRP channel 
family can be seen to fall into seven subfamilies [4]. �e 
number of channels within each subfamily varies across 
species (Figure 1 and Table 1). �e transmembrane seg-
ments tend to share the greatest homology within a 
particular subfamily. �e TRPC subfamily (‘canonical’) 
comprises closest homologs of Drosophila trp channels. 
TRPVs (‘vanilloid’) are named after a founding member 
vanilloid receptor 1 (now TRPV1). �e TRPM subfamily 
groups homologs of melastatin-1 (now TRPM1). TRPMLs 
and TRPPs include mucolipins and polycystins, respec-
tively. All members of the TRPA subfamily are nocicep tive 
channels characterized by the presence of about 14 
ankyrin repeats. �e TRPN subfamily is named after the 
‘NO-mechano-potential C’ (NOMP-C) channel of Caenor-
habditis elegans. So far, the only TRPN family member to 
be identified in vertebrates is from zebrafish [5].

Within the six kingdoms of life, bacteria, protozoa, 
chromista, plantae, fungi and animalia [6], TRP-related 

Summary
The transient receptor potential (TRP) multigene 
superfamily encodes integral membrane proteins 
that function as ion channels. Members of this family 
are conserved in yeast, invertebrates and vertebrates. 
The TRP family is subdivided into seven subfamilies: 
TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), 
TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) 
and TRPN (NOMPC-like); the latter is found only in 
invertebrates and �sh. TRP ion channels are widely 
expressed in many di�erent tissues and cell types, 
where they are involved in diverse physiological 
processes, such as sensation of di�erent stimuli or 
ion homeostasis. Most TRPs are non-selective cation 
channels, only few are highly Ca2+ selective, some are 
even permeable for highly hydrated Mg2+ ions. This 
channel family shows a variety of gating mechanisms, 
with modes of activation ranging from ligand binding, 
voltage and changes in temperature to covalent 
modi�cations of nucleophilic residues. Activated 
TRP channels cause depolarization of the cellular 
membrane, which in turn activates voltage-dependent 
ion channels, resulting in a change of intracellular 
Ca2+ concentration; they serve as gatekeepers for 
transcellular transport of several cations (such as 
Ca2+ and Mg2+), and are required for the function 
of intracellular organelles (such as endosomes and 
lysosomes). Because of their function as intracellular 
Ca2+ release channels, they have an important 
regulatory role in cellular organelles. Mutations in 
several TRP genes have been implicated in diverse 
pathological states, including neurodegenerative 
disorders, skeletal dysplasia, kidney disorders and pain, 
and ongoing research may help �nd new therapies for 
treatments of related diseases.
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Table 1. The TRP channel familya

	 Drosophila	 Caenorhabditis	 Ciona	 Fugu	 Danio	 Mus	 Homo
	 melanogaster	 elegansb	 intestinalisb	 rubripes	 reriob	 musculus	 sapiens

TRPC	 3	 3	 8	 8	 8	 7	 6

TRPV	 3	 5	 2	 4	 4	 6	 6

TRPM	 1	 4	 2	 6	 6	 8	 8

TRPA	 4	 2	 4	 1	 2	 1	 1

TRPN	 1	 1	 1	 -	 1	 -	 -

TRPML	 4	 1	 9	 2	 2	 3	 3

TRPP	 1	 1	 1	 4	 4	 3	 3

Total	 17	 17	 27	 25	 27	 28	 27
aTRP channels in the fruit fly Drosophila melanogaster, the worm Caenorhabditis elegans, the sea squirt Ciona intestinalis, the puffer fish (Seifuku, Fugu rubripes), the 
zebrafish (Danio rerio), mouse and human. The numbers correspond to proteins with distinct channel properties within each subfamily [104-106]. For more detailed 
information concerning properties of TRP channels, please refer to the IUPHAR database [103]. bOthers report about 60 TRPs in zebrafish, 30 in sea squirts and 24 in 
C. elegans.

Figure 1. A phylogenetic tree of human TRP channels. Sequence homology analyses show that all TRP channels fall into seven subfamilies that 
comprise proteins with distinct channel properties. Because TRPC2 is a pseudogene in human and TRPNs are not present in mammals, we used 
mouse TRPC2 (ENSMUSP00000102562) and fish TRPN1 (ENSDARP00000093955) to show relations between all subfamilies. Protein sequences were 
aligned using ClustalW2 at the EMBL-EBI server. Phylogenetic distances were calculated using PAM matrix and the unrooted tree was obtained 
using NJplot [102]. The TRP subfamilies are represented by different colors. The scale bar represents 0.2 substitutions. Ensembl protein IDs for 
human protein sequences used in the analysis are as follows: TRPM1, ENSP00000380897; TRPM2, ENSP00000381023; TRPM3, ENSP00000350140; 
TRPM4, ENSP00000252826; TRPM5, ENSP00000387965; TRPM6, ENSP00000354006; TRPM7, ENSP00000320239; TRPM8, ENSP00000323926; 
TRPV1, ENSP00000174621; TRPV2, ENSP00000342222; TRPV3, ENSP00000301365; TRPV4, ENSP00000261740; TRPV5, ENSP00000265310; TRPV6, 
ENSP00000352358; TRPC1, ENSP00000273482; TRPC3, ENSP00000368966; TRPC4, ENSP00000369003; TRPC5, ENSP00000262839; TRPC6, 
ENSP00000340913; TRPC7, ENSP00000426070; TRPML1, ENSP00000264079; TRPML2, ENSP00000359640; TRPML3, ENSP00000304843; TRPP2, 
ENSP00000237596; TRPP3, ENSP00000325296; TRPP5, ENSP00000290431; TRPA1, ENSP00000262209.
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genes seem to be found only in fungi and animalia. Des­
pite extensive genomic studies, no single TRP-encoding 
gene has been identified in land plants so far, but the 
genome of chlorophyte algae seems to contain several 
types of putative TRP-like genes [7]. In the green alga 
Ostreococcus tauri, at least one of the putative genes 
might encode a potential TRP channel involved in a Ca2+ 
signaling pathway. Therefore, land plants might have lost 
TRP channels after their divergence from the chlorophyte 
algae [7].

In fungi, the TRP family is represented by a single 
member, TrpY1 (also known as Yvc1 for yeast vacuolar 
conductance 1), which encodes a vacuolar membrane 
protein that functions as a mechano-sensor of vacuolar 
osmotic pressure in yeast [8-11]. The yeast TRP channel 
is activated in a Ca2+-dependent manner through stretch­
ing of the vacuolar membrane [12,13] as well as by indole 
and other aromatic compounds [8,9]. The action of aro­
matic ligands requires the presence of aromatic residues 
in the sixth transmembrane segment that might be 
counterparts of those found in several TRP channels of 
multicellular organisms [8,9]. Because TrpY1p shares 
only partial homology with other known TRPs, it might 
be considered as one of the ancient mechano- and 
chemosensors [14,15].

Choanoflagellates are unicellular and colonial organisms 
considered to be the common ancestor of animals. It has 
been hypothesized that these colony-forming flagellate 
eukaryotes developed a Ca2+ signaling system that 
comprises homologs of various types of animal plasma 
membrane Ca2+ channels, including the store-operated 
channel, ligand-operated channels, voltage-operated 
channels, second messenger-operated channels, and five 
out of six animal TRP channel families [16]. Thus, it is 
very likely that these choanoflagellate genes served as 
ancestors for the evolution of different TRP subfamilies 
in animals; further expansions within subfamilies may 
have mainly occurred by gene duplications (Figure 1). 
During evolution, most vertebrates lost the mechano­
sensitive TRPN channels but almost doubled the number 
of TRPs involved in calcium and magnesium homeo­
stasis, thermo- and chemosensing and calcium signaling 
(TRPCs, TRPVs and TRPMs; Table 1).

Characteristic structural features
Owing to the shortage of accurate X-ray crystallography 
data describing the three-dimensional structure of an 
entire TRP channel, most information concerning TRP 
domain composition comes from in silico and structure/
function relationship studies. It is thought that most 
TRPs function as homotetramers. The formation of 
heteromultimeric channels between members of the 
same subfamily or different subfamilies has been des­
cribed in several cases (such as between the TRPCs), and 

this could potentially create a wide variety of channels; 
however, it is debatable whether or not these multimeric 
channels are formed [17]. A typical TRP protein contains 
six putative transmembrane segments (S1 to S6) with a 
pore-forming reentrant loop between S5 and S6 [18,19] 
(Figure 2). Intracellular amino and carboxyl termini are 
variable in length and consist of a variety of domains [18]. 
From cryo-electron microscopy data on TRPC3, the large 
intracellular domain can be seen as a ‘nested box’ 
structure: a ‘wire frame’ outer shell acts as a sensor for 
activators and modulators, and a globular inner chamber 
might modulate ion flow [20]. Interestingly, in a few cases 
the carboxy-terminal tails contain entire enzyme activi­
ties. For example, a Nudix hydrolase domain of TRPM2 
functions as an ADP-ribose pyrophosphatase [21]. In 
TRPM6 and TRPM7 an atypical α-kinase domain is 
involved in regulation of channel function [22,23]. Another 
feature in the amino termini of many TRPs is the 
presence of ankyrin repeats, 33-residue motifs consisting 
of pairs of antiparallel α-helices connected by β-hairpin 
motifs. The number of repeats in the ankyrin repeat 
domain (ARD) can vary between different TRPs: 3 to 4 in 
TRPCs, 6 in TRPVs, 14 to 15 in TRPAs and about 29 in 
TRPNs. Functionally, ARD seems to be connected with 
tetramerization of the channel and interactions with 
ligands and protein partners [24]. Currently, the ARD of 
TRPV channels is the only domain out of the entire TRP 
superfamily for which high resolution crystallographic 
data have so far been obtained [25,26].

The presence of other domains and motifs that influ­
ence channel functions, such as coiled coils, calmodulin-
binding sites, lipid-interaction domains, EF hands or 
phosphorylation sites, is highly variable and very often 
not preserved in all members within the same subfamily 
(for more details see [18]).

Localization and function
TRPs are expressed in almost every cell type in both 
excitable and non-excitable tissues (Table 2). TRP channels 
are present in all cellular membranes, with the exception 
of the nuclear envelope and mitochondria. Most TRP 
channels are localized in the plasma membrane, where 
they have an essential role in the influx and/or trans­
cellular machinery that transports Ca2+, Mg2+ and trace 
metal ions, and they modulate the driving force for ion 
entry. These contributions are essential for several physio­
logical processes, ranging from pure sensory functions 
(such as pheromone signaling, taste transduction, noci­
ception and temperature sensation) and homeostatic 
functions (such as Ca2+ and Mg2+ reabsorption and osmo­
regulation) to many other motile functions, such as 
muscle contraction and vasomotor control.

The functions of TRP channels at specific locations are 
often modulated by their associations with accessory 
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proteins (such as TRPV4 and PACSIN3, a protein kinase 
C and casein kinase II substrate in neurons that is 
involved in synaptic vesicular membrane trafficking and 

regulation of dynamin-mediated endocytotic processes) 
and by formation of signaling complexes with various 
signaling proteins (such as TRPM4 and phospholipase C 

Figure 2. Predicted structural topology of TRP channels. (a) All channels contain six transmembrane segments (S1 to S6) with a putative pore 
region (P) between S5 and S6. Amino and carboxyl termini are variable in length and contain di�erent sets of domains. (b) Distribution of domains 
in selected human TRP channels [103]. The number and composition of domains vary between di�erent TRP channels and are only partially 
preserved within members of the same subfamily. aa, amino acids; CaM, calmodulin; EF hand, helix-loop-helix Ca2+ binding motif; PH, pleckstrin 
homology domain; ER, endoplasmic reticulum; NUDIX domain, nucleoside diphosphate linked moiety X-type motif.
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Table 2. Expression and function of human and mouse TRP channels

Channel subunit Chromosomal location Cellular expression Physiological functions

TRPC subfamily

    TRPC1 Human: 3q22-q24; 
mouse: 9 E4

Ubiquitous Generation of the excitatory postsynaptic potential in brain; 
netrin-1 and brain-derived neurotrophic factor (BDNF)-mediated 
growth cone guidance; connections to sleep/wakefulness states, 
alertness and appetite; brain development (together with TRPC5); 
glutamate signaling in hippocampus; regulation of smooth muscle 
contraction pulmonary system; platelet function; skeletal muscle 
differentiation; mechano-sensation?

    TRPC2 Human: 11p15.4-p15.3 
(pseudogene);  
mouse: 7 F1

Dendritic tips of the vomeronasal 
sensory neurons and spermatozoa 
(mouse)

Pheromone detection that regulates sexual and social behaviors, 
such as gender recognition and male-male aggression (mouse)

    TRPC3 Human: 4q25-q27; 
mouse: 3 B

Central nervous system (CNS) and 
smooth and cardiac muscle cells

BDNF-mediated growth cone guidance (TRPC1-independent); 
spine formation in brain; γ-aminobutyric acid signaling in striatum; 
astrocyte function; moto-control in cerebellum; cerebral vaso-
motor control; erythropoietin function; functional coupling to 
orexin receptor

    TRPC4 Human: 13q13.1-q13.2; 
mouse: 3 D

Placenta, adrenal gland, CNS, 
endothelium, smooth muscle cells, 
kidney, intestinal cells of Cajal

Endothelium-dependent vasorelaxation and regulation of 
transcellular permeation of the endothelial layer; cell-cell adhesion 
in endothelium through junctional proteins; hypoxia sensing 
together with TRPC1 

    TRPC5 Human: Xq23-q24; 
mouse: X F2

Brain, especially in fetal brain and very 
weak expression in other tissues

Brain development (together with TRPC1); neurite growth, 
growth cone guidance and morphology; anxiety, fear and reward 
processing in nucleus accumbens

    TRPC6 Human: 11q21-q22; 
mouse: 9 A1

Smooth muscle cells, lung, brain, 
placenta, kidney (podocyte foot 
processes), spleen, ovary and small 
intestine, neutrophils

Vaso-motor regulation; α1 signaling in smooth muscle; smooth 
muscle proliferation; angiogenesis; endocannabinoid signaling 
in the brain; promotion of dendrite growth and synapse forming 
in the developing brain; glomerular filter integrity in the kidney; 
platelet function; redox sensor; mechano-sensor?

    TRPC7 Human: 5q31.2;  
mouse: 13 B2

Pituitary glands, kidney and CNS 
(human); heart and lung; weak in CNS 
and kidney (mouse)

Controls respiratory rhythm activity in pre-Bötzinger complex in 
the brain 

TRPV subfamily

    TRPV1 Human: 17p13.3;  
mouse: 11 B3

Dorsal root and trigeminal ganglia; 
spinal and peripheral nerve terminals, 
brain, skin (cutaneous sensory 
nerve fibers, mast cells, epidermal 
keratinocytes, dermal blood vessels, the 
inner root sheet and the infundibulum 
of hair follicles, differentiated sebocytes, 
sweat gland ducts, and the secretory 
portion of eccrine sweat glands), 
pancreas, bladder (urothelium, smooth 
muscle, blood vessels and neurons)

Thermo-sensation (heat); autonomic thermoregulation; 
nociception; pain management; synaptic plasticity in the brain 
(long-term depression); endocannabinoid signaling in the brain; 
food intake regulation; growth cone guidance in the brain; 
osmosensing in the brain by a particular TRPV1 variant; multiple 
functions in the gut

    TRPV2 Human: 17p11.2;  
mouse: 11 B2

Dorsal root ganglia and CNS neurons, 
gastro-intestinal tract, spleen, mast cells, 
smooth, cardiac and skeletal muscle 
cells 

Thermo-sensation (noxious heat); nociception; axon outgrowth in 
spinal motor neurons; critical for phagocytosis in macrophages

    TRPV3 Human: 17p13.3;  
mouse: 11 B4

Dorsal root and trigeminal ganglion 
neurons, brain, keratinocytes, hair 
follicles, tongue and testis

Thermo-sensation (moderate heat); nociception; skin integrity, 
wound healing, hair growth and sebocyte function

    TRPV4 Human: 12q24.1;  
mouse: 5 F

CNS (large neurons), trigeminal ganglia, 
heart, liver, kidney, skin (keratinocytes), 
osteoblasts, blood vessels 
(endothelium), bladder (urothelium) 
and testis, cochlea (inner and outer hair 
cells, marginal cells of the cochlear stria 
vascularis), kidney (epithelial cells of 
tubules and glomeruli)

Thermo-sensation (moderate heat); mechano-sensation; 
osmo-sensation; nociception; modulation of cell migration; 
endothelium vaso-motor control and possible shear stress sensor; 
mechano-receptor in urothelium (important for voiding control); 
osteogenesis and osteoclast function; important in human bone 
and neurodegenerative diseases; control adherens junctions in 
skin; cochlea

    TRPV5 Human: 7q35;  
mouse: 6 B2

High in kidney; lower in gastro-intestinal 
tract, pancreas, testis, prostate, placenta, 
brain and salivary gland

Ca2+ (re)absorption channel in kidney and intestines

Continued overleaf
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(PLC) isoforms and phosphatidylinositol kinases/phos­
phatases) [27,28]. Currently, the mechanisms of intra­
cellular trafficking of TRP channels and their guidance to 
the plasma membrane or to intracellular locations are 
mostly unknown [29].

TRPs and disease
Several TRP genes are implicated in a wide range of 
diseases in humans [30,31]. These fall under the umbrella 
of the ‘channelopathies’, which are defined as diseases 
caused by impaired channel functions, resulting from 

Table 2. Continued

Channel subunit Chromosomal location Cellular expression Physiological functions

    TRPV6 Human: 7q33-q34; 
mouse: 6 B2

High in gastro-intestinal tract; lower 
in kidney, pancreas, testis, prostate, 
placenta, brain and salivary gland

Ca2+ (re)absorption channel in intestines and kidney; key player in 
Ca2+/1,25-dihydroxyvitamin D3-induced keratinocyte development 
in the skin

TRPM subfamily
    TRPM1 Human: 15q13-q14; 

mouse: 7 C
Skin melanocytes, retinal bipolar ganglia Light response in ON bipolar retinal ganglia cells; tumor repressor 

in melanoma cells 
    TRPM2 Human: 21q22.3; mouse: 

10 C1
Brain, bone marrow, peripheral blood 
cells (neutrophils), lung, spleen, eye, 
heart and liver

Oxidative and nitrosative stress response; activation of 
granulocytes; pancreas insulin release; critical in apoptosis 

    TRPM3 Human: 9q21.13; mouse: 
19 C1

Primarily in kidney; lower in brain, 
sensory neurons, testis, ovary, pancreas 
and spinal cord

Steroid hormone (pregnanolon) sensor; possible regulator in 
endocrine pancreas, glia cells and cerebellar Purkinje cells 

    TRPM4 Human: 19q13.32; mouse: 
7 B4

Heart, exo- and endocrine pancreas, 
mast cells, smooth muscle, macula 
densa, lung and placenta 

Mast cell degranulation (histamine release) and migration as a 
critical Ca-impermeable cation channel regulating Ca2+ entry; 
catecholamine release from chromaffin cells; vasopressin release 
from paraventricular and supraoptic hypothalamic nuclei

    TRPM5 Human: 11p15.5; mouse: 
7 F5

Tongue (taste bud cells), lungs, testis, 
digestive system, brain, endocrine 
pancreas

Taste (sweet, bitter, umami); positive regulator of glucose-induced 
insulin release; trigeminal nasal chemoreception

    TRPM6 Human: 9q21.13; mouse: 
19 B

Kidney, colon and intestine Mg2+ homeostasis and reabsorption in kidney and intestine

    TRPM7 Human: 15q21; mouse: 
2 F2

Ubiquitous Mg2+ homeostasis and reabsorption in kidney and intestine; 
cell cycle control; gastrulation; development of thymocytes 
(thymopoiesis); cell migration; shear stress sensor?; skeletogenesis? 

    TRPM8 Human: 2q37.1; mouse: 
1 C5

Sensory dorsal root and trigeminal 
ganglia neurons, nodose ganglion cells 
innervating the upper gut, vascular 
smooth muscle cells, liver, gastric 
fundus, bladder (urothelium) and 
different tissues of the male genital tract; 
high in tumors from prostate, breast, 
colon, lung and skin 

Thermo-sensation (cold); sperm motility, acrosome reaction 

TRPA1 subfamily
    TRPA1 Human: 8q13; mouse: 

1 A3
Hair cells, sensory dorsal root and 
trigeminal ganglia neurons, fibroblasts

Thermo-sensation (noxious cold); the most versatile chemo-sensor; 
mechano-sensation?; nociception; olfactory responses; cold-
induced contraction in colon and bladder 

TRPML subfamily
    TRPML1 Human: 19p13.3-13.2; 

mouse: 8 A1.1
Ubiquitous; intracellular ion channel Essential for endocytosis and endosomal/lysosomal function; 

regulation of autophagy
    TRPML2 Human: 1p22; mouse: 

3 H3
Ubiquitous; intracellular ion channel Endosomal/lysosomal function

    TRPML3 Human: 1p22.3; mouse: 
3 H3

Hair cells (stria vascularis, stereocilia); 
intracellular ion channel

Endosomal/lysosomal function; autophagy; hair cell maturation?

TRPP subfamily
    TRPP2 Human: 4q22; mouse: 

5 E4
Ubiquitous; mostly in ovary, fetal and 
adult kidney, testis, and small intestine 
in both motile and primary cilia

Cardiac, skeletal and renal development; integrity of the vessel 
wall; negative regulator of endogenous mechano-sensitive 
channels; mechano-receptor and flow-sensor in endothelium; 
apoptosis 

    TRPP3 Human: 10q24-q25; 
mouse: 19 D1

Adult heart, skeletal muscle, brain, 
spleen, testis, retina and liver

Renal development; part of putative sour sensor 

    TRPP5 Human: 5q31; mouse: 
18 B3

Testis, brain and kidney Spermatogenesis?

BDNF, brain-derived neurotrophic factor; CNS, central nervous system.
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either mutations in the encoding gene or an acquired 
mechanism, such as autoimmunity.

TRPC6
Mutations in TRPC6 are linked to the human proteinuric 
kidney disease called focal and segmental glomerulo­
sclerosis (FSGS). FSGS patients show defects in the 
permeability barrier function in glomeruli, resulting in 
proteinuria and progressive kidney failure [32-34].

TRPV4
Mutations in TRPV4 are linked with inherited disorders 
of bone growth, including brachyolmias and skeletal 
dysplasias mainly characterized by short trunk, scoliosis 
and mild short stature [35].

TRPV4 has also been implicated in neurodegenerative 
disorders, such as scapuloperoneal spinal muscular atrophy 
(SPSMA) and Charcot-Marie-Tooth disease type 2C 
(CMT2C, known also as hereditary motor and sensory 
neuropathy type 2C) [36-39]. SPSMA is described by 
progressive weakness of scapular and peroneal muscle 
tissue, bone abnormalities and laryngeal palsy (the 
paralysis often being accompanied by loss of sensation). 
CMT2C results in progressive weakness of distal limbs, 
vocal cords, diaphragm, and intercostal and laryngeal 
muscles; impaired hearing and vision; some bone 
abnormalities, such as scoliosis; and bladder urgency and 
incontinence [36,37,39].

TRPM1
Melastatin or TRPM1 has been identified as a putative 
tumor suppressor in melanoma cells [40-42]. Mutations 
in TRPM1 are linked to autosomal-recessive congenital 
stationary night blindness (CSNB). CSNB is a hetero­
geneous group of retinal disorders characterized by non­
progressive impaired night vision and variable decreased 
visual acuity as a consequence of the loss of function of 
rod and cone ON bipolar cells in the retina [43-47].

TRPM4
Mutations resulting in Asn7Lys substitution in the amino-
terminal part of the TRPM4 channel cause autosomal-
dominant progressive familial heart block type 1 
(PFHB1), a cardiac bundle branch disorder that affects 
the electrical conduction of the heart and may progress 
to a complete heart block. Increased TRPM4 mutant 
channel density in the plasma membrane, resulting from 
impaired endocytosis, very likely depolarizes the 
conduction system and causes the heart block [48].

TRPM6
The TRPM6 locus is associated with hypomagnesemia 
with secondary hypocalcemia (HSH/HOMG), an auto­
somal recessive disorder characterized by low Mg2+ and 

Ca2+ levels in serum, resulting from impaired intestinal 
Mg2+ absorption and renal Mg2+ leak [49,50]. TRPM6 has 
a crucial role in active transcellular Mg2+ uptake at the 
apical membrane of the brush-border epithelium in 
intestines. Magnesium overload is also prevented by 
TRPM6, which is tightly regulated by the intracellular 
Mg2+ concentration [51].

TRPA1
The nociceptive TRPA1 channel is implicated in the 
etiology of an autosomal dominant familial episodic pain 
syndrome (FEPS) that is manifested by episodes of upper 
body pain, triggered by fasting and physical stress. FEPS 
patients show an enhanced cutaneous flare response with 
secondary hyperalgesia to punctuate stimuli in the 
presence of TRPA1 agonists [52].

TRPML1
Mucolipidosis type IV (MLIV) is caused by mutations in 
TRPML1. MLIV, an autosomal-recessive neurodegenera­
tive lysosomal storage disorder is linked with psycho­
motor retardation, ophthalmologic abnormalities, failure 
of corpus callosum development, blood iron deficiency 
and achlorhydria [53]. TRPML1 is a calcium and iron 
permeable intracellular channel in lysosomes and, there­
fore, possible pathological mechanisms might include 
block of the endocytotic pathway at the late endosome-
lysosome level, a defect in autophagy of endocytosed 
materials and impaired iron transport [54,55].

TRPP2
Polycystic kidney disease (PKD), the most common 
inherited form of kidney failure, is associated with a 
mutation in TRPP2 (known also as polycystin 2). PKD is 
characterized by the development of large epithelial-
lined cysts that are filled with fluid and can occupy much 
of the mass of the abnormally enlarged kidneys, thereby 
compressing and destroying normal renal tissue and 
impairing kidney function [56].

Mechanism
The activity of TRP channels is regulated by a variety of 
mechanisms. In general, these processes require the whole 
complement of post-transcriptional modifications, includ­
ing G-protein-coupled receptor-related mechanisms, 
(de)phosphorylation and ubiquitination. Some more 
general mechanisms of TRP channel gating and their 
relevance to sensory modulation are discussed below.

Membrane voltage
A significant number of TRP channels, mostly involved 
in sensory perception, have intrinsic voltage dependence 
[57-60]. The voltage-dependent activation of TRPs is 
sensitive to other triggers, such as the presence of ligands 
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or changes in temperature that can alter the midpoint of 
the activation by several hundreds of millivolts [59,61]. 
Similar to voltage-gated potassium channels, the mole­
cular counterparts involved in voltage sensing are 
probably positively charged lysine and arginine residues 
in transmembrane segment S4 and the S4-S5 linker [61]. 
For a recent review on voltage sensing and its relevance 
to the gating of TRP channels in response to thermal and 
chemical stimuli, see [62].

Membrane phospholipids
Several studies report a direct effect of membrane phos­
pholipids in the regulation of TRP channel activity (for 
example, of TRPA1 and TRPV1) [63-65]. In particular, 
many TRPs are highly sensitive to phosphatidylinositol 
4,5-bisphosphate (PtdIns(4,5)P2), the most abundant 
acidic phospholipid in the plasma membrane. The plasma 
membrane level of PtdIns(4,5)P2 can change rapidly 
because of the action of different PLC isoforms and 
phosphatidylinositol kinases/phosphatases, resulting in 
modulation of TRP channel activity [66-68]. Many 
membrane-associated enzymes are also sensitive to 
changes in membrane PtdIns(4,5)P2 levels and, therefore, 
directly or indirectly can affect TRP channel function. 
For example, the membrane protein Pirt, which is 
required for the stimulatory effect of PtdIns(4,5)P2 on 
TRPV1 activity, interacts with both phosphoinositides 
and TRPV1 [64]. Cell-specific variations in the level of 
such regulatory proteins might explain at least some of 
the discrepancies relating to the effects of PtdIns(4,5)P2 
on the TRP channel activity [29].

Another PtdIns(4,5)P2-related mechanism has been 
proposed for the cold- and menthol-sensitive TRPM8 
and the Ca2+-activated taste-transducing TRPM5 channels. 
An increased intracellular Ca2+ concentration leads to 
activation of Ca2+-dependent PLC (such as PLCδ1), result­
ing in depletion of cellular PtdIns(4,5)P2 and a subsequent 
channel decay [69,70]. This PtdIns(4,5)P2 depletion does 
not lead to complete channel inactivation, but rather 
shifts the voltage dependence of channel activity to more 
positive potentials and reduces the channel sensitivity 
(desensitization) to ligands such as menthol (TRPM8) or 
Ca2+ (TRPM5) [71]. Endolysosome-localized TRPML 
channels interact directly with phosphatidylinositol 
3,5-bisphosphate, an endolysosome-specific phosphoinosi­
tide, resulting in highly specific and potent activation of 
these channels [72].

Phosphorylation
Activation of PLC not only results in breakdown of 
PtdIns(4,5)P2 but also in the activation of protein kinase 
C (PKC). PKC-dependent phosphorylation might be a 
direct activatory mechanism or might sensitize the 
channel for other stimuli (for example, it sensitizes 

TRPV1 to heat or capsaicin) [73,74]. However, PKC 
might downregulate the channel function: activation of 
PKC initiates the dephosphorylation of TRPM8 and 
subsequent inactivation of this channel [75]. The iden­
tities of the kinases that mediate phosphorylation of 
TRPM8 and the phosphorylation site in TRPM8 are still 
unknown.

An additional pathway for the regulation of TRP 
channel activity following receptor stimulation is through 
protein kinase A (PKA). Activation of PKA by prosta­
glandin E2 stimulation potentiates TRPV1 responses and 
counteracts channel desensitization [74]. The PKA-
dependent modulation of TRPV1 requires anchoring of 
PKA to the channel through the A-kinase anchoring 
protein AKAP150 and phosphorylation of a single 
amino-terminal serine residue [74,76]. In TRPM8, PKA 
activation leads to desensitization of the channel activity 
by an as yet unknown mechanism. Both PKA- and PKC-
dependent pathways have opposite effects on modulation 
of the heat-activated TRPV1 and the cold-activated 
TRPM8 [77].

Ligands
Most TRP channel activities are modulated by a large 
number of exogenous and endogenous ligands. In parti­
cular, temperature-sensitive TRPs seem to be preferred 
targets for plant-derived chemicals. The classic example 
is heat-sensitive TRPV1, which is activated by structurally 
unrelated botanical compounds such as capsaicin (the 
pungent extract of hot peppers [78]), resiniferatoxin (an 
active compound from the cactus Euphorbia resinifera 
[79]), piperine (the pungent component in black pepper 
[80]) and camphor (the waxy substance with penetrating 
odor extracted from Cinnamomum camphora [81], which 
also activates TRPV3 [82]). Other examples include 
TRPM8, a cold receptor directly activated by menthol 
(derived from the mint plant Mentha piperita) and 
eucalyptol (derived from the tree Eucalyptus globulus), 
[83,84], and TRPV4, which is activated by bisandro­
grapholide (derived from the plant Andrographis panicu­
lata [85]). Thus, inherent thermal sensation linked to 
application of certain chemical compounds (chemes­
thesis) is related to activation of a single channel that can 
respond to both thermal and chemical stimuli (such as 
‘hot’ chili pepper or ‘cool’ mint).

In addition to natural plant-derived compounds, TRP 
channels respond to a wide range of synthetic ligands, 
many of which are important pharmacological tools that 
can be used to modulate channel functions. Some can 
activate more than one TRP channel (for example, 
2-aminoethyl diphenylborinate activates TRPV1, TRPV2 
and TRPV3 [86,87] and icilin activates TRPM8 and 
TRPA1 [83,88]), whereas some are relatively highly selec­
tive for a particular TRP channel (such as olvanil for 
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TRPV1 [89] and 4α-phorbol-12,13-didecanoate (4α-PDD), 
lumiphorbols, phorbol-hexonates and GSK 1016790A for 
TRPV4 [90-92]).

Several TRP channels are receptors for endogenous 
compounds. TRPCs respond to diacyl glycerol, a lipid 
product derived from PtdIns(4,5)P2 breakdown catalyzed 
by PLC after a G-protein- or tyrosine-kinase-coupled 
receptor-dependent activation [93]. Arachidonic-acid-
related compounds are involved in gating TRPV1 
(arachidonoyl ethanolamide, 12,15-(S)-hydroperoxyeico­
satetraenoic acid and leukotriene B4 [94]) and TRPV4 
(5’,6’-epoxieicosatrienoic acid [95]), and sphingosine, a 
primary part of sphingolipids, activates TRPM3 [96]. 
However, the mechanisms of these gating behaviors of 
TRP channels are currently unknown.

Frontiers
The discovery of TRP channels has revolutionized our 
understanding of many sensory and general physiological 
processes. TRPs generally act in concert with other ion 
channels and proteins. Given that, in many cases, these 
mechanisms are evolutionarily conserved from inverte­
brates to humans, it is not surprising that inherited 
impairments of TRP channel functions lead to disease. In 
addition, changes in channel expression levels or channel 
sensitization or desensitization, resulting in exaggerated 
or diminished responses to various pathological stimuli, 
can also contribute to pathophysiology of TRP-related 
diseases. Various endogenous agents released during 
early disease stages can also influence TRP channel 
functions and lead to inflammation and the progression 
of the disease (for example, release of leukotriene B4 leads 
to TRPV1 activation). These findings highlight TRP 
channels as important pharmacological targets. Several 
TRPV1 antagonists function as analgesic agents for the 
treatment of chronic pathological pain [97]. The classic 
natural pungent TRPV1 agonist, capsaicin, has been 
reported as a possible relief agent for some patients with 
tonic neuropathic pain [98]. Several lines of evidence 
suggest that blocking TRPC6 function might be clinically 
beneficial for FSGS patients [99]. Preliminary results 
demonstrate that the commonly used immunosup­
pressive agent FK-506 can inhibit TRPC6 activity in vivo 
and might be a possible treatment for idiopathic FSGS 
[100]. Another example is a small molecule antagonist of 
TRPV4, HC-067047, which may provide promising 
means for the treatment of bladder dysfunction [101]. 
Therefore, further understanding of the (patho)
physiological roles and activation mechanisms of these 
channels may provide novel insights into the etiology and 
possible treatments of many TRP-related diseases.
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