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A unique feature of non-Hermitian systems is the skin effect, which is the extreme sensitivity
to the boundary conditions. Here, we reveal that the skin effect originates from intrinsic non-
Hermitian topology. Such a topological origin not merely explains the universal feature of the
known skin effect, but also leads to new types of the skin effects — symmetry-protected skin effects.
In particular, we discover the Z2 skin effect protected by time-reversal symmetry. On the basis of
topological classification, we also discuss possible other skin effects in arbitrary dimensions. Our
work provides a unified understanding about the bulk-boundary correspondence and the skin effects
in non-Hermitian systems.

Recently, non-Hermitian Hamiltonians [1–7] have been
extensively studied in open classical [8–14] and quan-
tum [15–20] systems as well as disordered or correlated
solids with finite-lifetime quasiparticles [21–27]. In par-
ticular, much research has focused on distinctive char-
acteristics of non-Hermitian topological phases [28–60].
The rich non-Hermitian topology is attributed to the
complex-valued nature of the spectrum, which enables
two types of complex-energy gaps [56]: line gap and point
gap. Since a non-Hermitian Hamiltonian with a line
gap is continuously deformed to a Hermitian one without
closing the line gap [56], topology for a line gap describes
the persistence of conventional topological phases against
non-Hermitian perturbations, which is relevant to topo-
logical lasers [40–44], for example. On the other hand, a
non-Hermitian Hamiltonian with a point gap is allowed
to be deformed to a unitary one [46, 56]. As a result,
point-gapped topological phases cannot always be contin-
uously deformed into any Hermitian counterparts; topol-
ogy for a point gap is intrinsic to non-Hermitian systems
in sharp contrast to a line gap. A point gap describes
unique non-Hermitian topological phenomena such as lo-
calization transitions [1, 2, 46, 52, 58] and emergence of
exceptional points [21–26, 34, 37, 49, 50, 53, 55].

A hallmark of topological phases is the presence of
the localized states at the boundaries as a result of non-
trivial topology of the bulk [61–63]. Remarkably, non-
Hermiticity alters the nature of the bulk-boundary cor-
respondence (BBC) [64–92]. The critical distinction is
the extreme sensitivity of the bulk to the boundary con-
ditions, which is called the non-Hermitian skin effect [68].
It accompanies the localization of bulk eigenstates as well
as the dramatic difference of bulk spectra according to
the boundary conditions, which forces us to redefine the
bulk topology so as to be suitable for the open bound-
ary condition [67, 68, 78, 80]. The BBC persists in the
presence of a line gap since non-Hermitian Hamiltonians
with a line gap can be continuously deformed to Hermi-
tian ones. However, the BBC for a point gap has still
remained unclear. Since a point gap describes intrinsic
non-Hermitian topology, the nature of the BBC may be

disparate from the Hermitian counterpart. In fact, even
when a point gap is open under the periodic boundary
condition, it can be close under the open boundary con-
dition [46, 66, 76]. Thus, the non-Hermitian skin effect
obscures point-gap topology.
This Letter provides a unified understanding about the

BBC and the skin effect in non-Hermitian systems. We
show that the BBC holds even for a point gap in semi-
infinite systems with only one boundary. In finite sys-
tems with open boundaries, by contrast, we demonstrate
that the point-gap topology inevitably induces the non-
Hermitian skin effect and results in the absence of topo-
logically protected boundary states due to a point gap.
On the basis of such a topological origin, new types of
the skin effects are revealed, including the Z2 skin effect
protected by time-reversal symmetry. We also elucidate
the relationship between point and line gaps for the BBC.
Bulk-boundary correspondence in semi-infinite sys-

tems.— A non-Hermitian Hamiltonian H is defined
to have a point gap if and only if its complex spec-
trum does not cross a reference point E ∈ C, i.e.,
det (H − E) 6= 0 [46, 56]. The simplest nontrivial ex-
ample of the point-gapped topological phases appears in
one-dimensional systems with no symmetry. Whereas
det (H − E) is always real for Hermitian H , it can be
complex for non-Hermitian H , by which the following
winding number W (E) ∈ Z is defined:

W (E) :=

∫ 2π

0

dk

2πi

d

dk
log det (H (k)− E) , (1)

where H (k) is the non-Hermitian Bloch Hamiltonian
in momentum space with the finite number of bands
(k ∈ [0, 2π]). Topological phases are absent in one-
dimensional Hermitian systems without symmetry pro-
tection [61–63]; the point-gap topology characterized by
W (E) is intrinsic to non-Hermitian systems.
Corresponding to W (E) 6= 0, the boundary modes

with the eigenenergy E can appear in semi-infinite
systems with only one boundary. Suppose the non-
Hermitian system has a boundary on the left but no
boundary on the right (the same semi-infinite boundary
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condition is chosen below unless otherwise stated). An
important observation is that the Hermitian Hamiltonian
H̃ is obtained by [46, 56]

H̃ :=

(

0 H − E
H† − E∗ 0

)

. (2)

Under the periodic boundary condition, when a point
gap is open for non-Hermitian H (k), a real energy gap is
also open for Hermitian H̃ (k), and vice versa. In addi-
tion, H̃ respects additional chiral symmetry by construc-
tion: ΓH̃Γ−1 = −H̃ with Γ := σz. As a result of the
conventional BBC for Hermitian Hamiltonians, H̃ with
the semi-infinite boundary possesses topologically pro-
tected zero modes localized at the boundary [61–63] in
a similar manner to the Su-Schrieffer-Heeger model [93].
The corresponding topological invariant coincides with
W (E) in Eq. (1). For W (E) < 0, there appear

boundary modes (0 |E〉)
T

with negative chirality [i.e.,

Γ (0 |E〉)
T

= − (0 |E〉)
T
], which implies that |E〉 is a

right eigenstate of non-HermitianH (i.e., H |E〉 = E |E〉)
localized at the boundary. For W (E) > 0, on the other

hand, the boundary modes (|E〉 0)T have positive chiral-

ity [i.e., Γ (|E〉 0)
T
= +(|E〉 0)

T
], which in turn implies

that |E〉 is a right eigenstate of H†, i.e., a left eigenstate
of H (i.e., 〈E|H = 〈E|E) [94].
The above discussion is valid for arbitrary E ∈ C in

the complex-energy plane satisfying W (E) 6= 0. Thus,
in semi-infinite systems HSIBC, the infinite number of
boundary modes with eigenenergies E emerges as a
result of the nontrivial winding number W (E) 6= 0.
This conclusion leads to the following theorem (index
theorem in spectral theory [95–100]):

Theorem I Let σ (H(k)) be the spectrum of H (k)
with k ∈ [0, 2π], which forms closed curves in the
complex-energy plane (Fig. 1). Then, the spectrum of
semi-infinite HSIBC with only one boundary is equal
to σ (H(k)) together with the whole area of E ∈ C

enclosed by σ (H(k)) with W (E) 6= 0. For W (E) < 0
(W (E) > 0), |E〉 is a right (left) eigenstate of HSIBC

localized at the boundary [i.e., HSIBC |E〉 = E |E〉
(〈E|HSIBC = 〈E|E)].

Theorem I is illustrated with the Hatano-Nelson
model [1, 2] without disorder, which is given by

H(HN) :=
∑

i

[

(t+ g) c†i+1ci + (t− g) c†ici+1

]

(3)

with t > 0 and g ∈ R. The spectrum of the Bloch
Hamiltonian H(HN) (k) = (t+ g) eik + (t− g) e−ik forms
an ellipse in the complex-energy plane, and we have
W (E) = sgn (g) for E ∈ C inside this ellipse. In fact,
the hopping from right to left dominates that from left
to right for g < 0, which leads to the emergence of the
boundary modes [100].

FIG. 1. Complex spectra of non-Hermitian systems with pe-
riodic, open, and semi-infinite boundaries. (a) A semi-infinite
system possesses the infinite number of boundary modes due
to the nonzero winding number W 6= 0 in the corresponding
periodic system. (b) The spectrum of a semi-infinite system
shrinks through the imaginary gauge transformation, result-
ing in an arc of the open-boundary system.

Skin effect as point-gap topology.— The above dis-
cussion breaks down in finite systems with open bound-
aries. In fact, the infinite number of boundary modes
is impossible in finite systems. Furthermore, the ad-
ditional boundary condition is imposed because of the
other boundary, which may forbid some of the boundary
states appearing in semi-infinite systems. For example,

the spectrum of the Hatano-Nelson model H
(HN)
OBC with

open boundaries forms not a loop but a line on the real
axis in the complex-energy plane, which signals the non-
Hermitian skin effect. In fact, using an imaginary gauge
transformation [1, 2, 68, 76]

V −1
r c†iVr = ric†i , V −1

r ciVr = r−ici, (0 < r < ∞) (4)

we have a Hermitian Hamiltonian H̄ := V −1
r H

(HN)
OBC Vr

for r :=
√

|(t− g) / (t+ g)|. Here, Eq. (4) shifts the
momentum from k to k − i log r. Since this similarity

transformation does not change the spectrum, H
(HN)
OBC has

the entirely real spectrum and hence no longer retains
the point gap. Saliently, such a non-Hermitian skin effect
is a general non-Hermitian topological phenomenon as a
direct consequence of point-gap topology, as summarized
in the following theorem:

Theorem II Finite HOBC with open boundaries is
always topologically trivial in terms of a point gap. Con-
sequently, ifH (k) under the periodic boundary condition
is point-gapped topological, the non-Hermitian skin ef-
fect inevitably occurs with a topological phase transition.

To see this theorem, we begin with

lim
N→∞

σ (HOBC) ⊂ σ (HSIBC) , (5)

where σ (HOBC) is the spectrum of a non-Hermitian sys-
tem HOBC with open boundaries and N unit cells, and
σ (HSIBC) is the spectrum of the corresponding semi-
infinite systemHSIBC. In fact, an approximate eigenstate
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of HSIBC can be obtained from an eigenstate of HOBC,
which becomes an exact eigenstate for N → ∞ [100].
The contrary is not always true: even if an approximate
eigenstate of HOBC is constructed from an eigenstate of
HSIBC, it is not necessarily an exact eigenstate of HOBC.
A crucial step is again the imaginary gauge transforma-

tion: HOBC → V −1
r HOBCVr and HSIBC → V −1

r HSIBCVr

with r ∈ (0,∞). For each transformation, we still have
the inclusion in Eq. (5):

lim
N→∞

σ
(

V −1
r HOBCVr

)

⊂ σ
(

V −1
r HSIBCVr

)

. (6)

This imaginary gauge transformation does not change
the spectrum of HOBC. However, it changes the spec-
trum of HSIBC since HSIBC has no boundary on the right
because of the semi-infinite nature [Fig. 1 (b)]. In fact,
H (k) changes to H (k − i log r) through Vr. Neverthe-
less, Eq. (6) implies that the transformed semi-infinite
spectrum includes the spectrum of HOBC for any trans-
formation Vr. Thus, we have

lim
N→∞

σ (HOBC) ⊂
⋂

r∈(0,∞)

σ
(

V −1
r HSIBCVr

)

. (7)

Because of Theorem I, when H (k) has a point gap
and W (E) < 0 (W (E) > 0), right (left) boundary
modes with eigenenergy E appear in the semi-infinite
system. Let us choose an appropriate imaginary gauge
Vr such that these boundary modes are transformed
to delocalized bulk modes. Then, E is on the edges
of σ

(

V −1
r HSIBCVr

)

, whereas it is originally located in-
side σ (HSIBC). Thus, the intersection of σ (HSIBC) and
σ
(

V −1
r HSIBCVr

)

is strictly smaller than σ (HSIBC) [100].
Repeating this procedure for all Vr with r ∈ (0,∞), the
right-hand side of Eq. (7) reaches an open curve or a topo-
logically trivial area of which interior satisfies W (E) = 0,
otherwise a contradiction arises [100]. Since this region
includes limN→∞ σ (HOBC) because of Eq. (7), HOBC is
also topologically trivial and different from H (k) with
nontrivial topology. Furthermore, σ (HOBC) is indeed
distinct from σ (H (k)), which implies the inevitable oc-
currence of the non-Hermitian skin effect due to the
point-gap topology.
Remarkably, Refs. [67, 68, 78, 80] determine the condi-

tions for the spectra of open-boundary systems and de-
velop the non-Bloch band theory of non-Hermitian sys-
tems. Their conditions are actually equivalent to the set
in the right-hand side of Eq. (7) [100]. An observation
similar to our Theorem II is also made in Ref. [76], which
is made rigorous by our results. Moreover, we identify the
non-Hermitian skin effect as the point-gap topology [101].
Such a topological origin constitutes a universal feature
of the non-Hermitian skin effect. Furthermore, new types
of the skin effects — symmetry-protected skin effects —
are discovered, as illustrated below.
Z2 non-Hermitian skin effect.— The point-gap

topology and the corresponding skin effect are enriched

by symmetry. Here, we consider time-reversal symmetry
defined in terms of transposition [56]:

THT (k)T−1 = H (−k) , TT ∗ = −1, (8)

where T is a unitary operator. This symmetry is funda-
mental as reciprocity in non-Hermitian spinful systems
and naturally appears, for example, in mesoscopic sys-
tems [102, 103] and open quantum systems [104–106].
In conventional quantum spin Hall insulators, the inte-

ger Chern number vanishes but the Kane-Mele Z2 one be-
comes nontrivial because of time-reversal symmetry [61–
63]. Similarly, Eq. (8) trivializes the winding number in
Eq. (1), but instead, it supplies a Z2 invariant. The Z2

topological invariant ν (E) ∈ {0, 1} for a reference point
E ∈ C is given by [56]

(−1)ν(E) := sgn

{

Pf [(H (π)− E)T ]

Pf [(H (0)− E)T ]

× exp

[

−
1

2

∫ k=π

k=0

d log det [(H (k)− E)T ]

]}

. (9)

Corresponding to the Z2 topological invariant ν (E),
we have an index theorem similar to Theorem I for semi-
infinite systems [100]. A clear distinction from Theorem I
is the Kramers degeneracy due to Eq. (8) [30, 51, 56]. The
extended Hermitian Hamiltonian H̃ in Eq. (2) respects
time-reversal as well as the additional chiral symmetry
Γ, analogous to time-reversal-invariant topological super-
conductors [107–110]. The index theorem states that the
semi-infinite system H̃ hosts an odd number of boundary
Majorana Kramers pairs for each E with ν (E) = 1. In
terms of the original non-Hermitian Hamiltonian H , the
Kramers pair reduces to a pair of right and left eigen-
states of H localized at the same boundary. Using the
transposition version of time reversal in Eq. (8), we can
convert the left eigenmode into a right one in the op-
positely extended semi-infinite system (i.e., semi-infinite
system with a boundary only on the right). As a result,
finite systems with open boundaries host localized modes
at both ends, as explicitly shown in the following model.
We recall that a quantum spin Hall insulator [111, 112]

can be constructed from a pair of time-reversed quantum
Hall insulators [113] with the spin-orbit coupling. Sim-
ilarly, combining the Hatano-Nelson model H(HN) (k) in
Eq. (3) and its time-reversed partner (H(HN))T (−k), we
have a canonical model that exhibits the Z2 skin effect:

H (k) =

(

H(HN) (k) 2∆ sink
2∆ sink (H(HN))T (−k)

)

= 2t cos k + 2∆(sink)σx + 2ig (sin k)σz , (10)

with t, g,∆ ≥ 0. It indeed respects time-reversal sym-
metry with T = iσy, and its spectrum is given as

E± (k) = 2t cosk ± 2i
√

g2 −∆2 sin k. Thus, H (k) for
g > ∆ retains a point gap. Since it can be continu-
ously deformed to H (k) with t = g,∆ = 0 while keeping
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FIG. 2. Z2 non-Hermitian skin effect. (a) Energy spectra of
the non-Hermitian Hamiltonian in Eq. (10) under the various
boundary conditions (t = 1, g = 0.3, ∆ = 0.2, δ = (1, 1, 1) ×
10−2, δh = 10−3, N = 100). (b) Kramers doublet with E =
1.948, one of which is localized at the left boundary and the
other of which at the right boundary.

the point gap, the Z2 invariant in Eq. (9) is obtained as
ν (E) = 1 when E is in the area enclosed by σ (H(k)).
The spectrum of Eq. (10) is shown in Fig. 2 (a). The

open-boundary spectrum is clearly different from the
periodic-boundary counterpart, which indicates the non-
Hermitian skin effect. Each complex eigenenergy con-
sists of a Kramers pair, one of which is localized at the
left boundary and the other of which at the right bound-
ary [Fig. 2 (b)]. Because of the Z2 nature, the point-
gap topology becomes trivial and no skin effect occurs if
the two nontrivial systems are stacked. Figure 2 (a) also
shows the spectrum of such a stacked system

Hstack (k) =

(

H (k) iδ · σ
−iδ · σ H (k)

)

, (11)

where the off-diagonal terms are symmetry-preserving
couplings. Consistently, the non-Hermitian skin effect
no longer survives.
Since the Z2 skin effect is topologically protected by

time-reversal symmetry, it breaks down by a symmetry-
breaking perturbation including (δh)σz [Fig. 2 (a)]. In
particular, such a local perturbation, which does not con-
nect the ends, may be infinitesimal for the breakdown of
the skin effect [81]. This local infinitesimal instability
is unique to symmetry-protected non-Hermitian skin ef-
fects.
Bulk-boundary correspondence in finite systems.—

General theories on the BBC in non-Hermitian sys-
tems have recently been developed [67, 68, 78, 80]. These
theories implicitly consider non-Hermitian topology for a
line gap [56]. A non-Hermitian Hamiltonian H is defined
to have a line gap if and only if its spectrum does not
cross a reference line in the complex-energy plane. The
modified BBC persists because a non-Hermitian Hamil-
tonian with a line gap can be continuously deformed to
a Hermitian one [56]. On the other hand, we develop a
theory of the BBC for a point gap, which complements
Refs. [67, 68, 78, 80].
A prototypical example is a non-Hermitian extension

of the Su-Schrieffer-Heeger model [93] with asymmetric
hopping [64, 67, 68, 80, 100]. It exhibits the skin effect
under the open boundary condition due to the point-
gap topology characterized by Eq. (1) under the periodic
boundary condition [100]. Still, a line gap can be open
and the corresponding topological invariant protected by
sublattice symmetry can be well defined under the open
boundary condition. As a result, topologically protected
zero modes can emerge because of this line-gap topology.
Importantly, point and line gaps are not necessarily

independent of each other. In fact, if a line gap is open,
a point gap is also open with a reference point on the
reference line. Hence, a reminiscence of line-gap topology
may survive in the presence of a point gap even if the line
gap is closed. A prime example includes non-Hermitian
superconductors in one dimension without time-reversal
symmetry. In this case, particle-hole symmetry

CHT (k)C−1 = H (−k) , CC∗ = +1 (12)

makes zero energy a special point in the complex-energy
plane in contrast to time-reversal symmetry. As a result,
non-Hermitian systems have the Z2 topological phases for
both point and line gaps, and their topological invariants
coincide with each other [56]. The Majorana zero modes
in Hermitian topological superconductors survive as long
as the point gap at E = 0 is open. Correspondingly, an
index theorem states the emergence of the zero modes
localized at the boundary [100]. A concrete model of
such a non-Hermitian s-wave topological superconductor
is provided in Ref. [81]. To characterize this type of point-
gap topology in a general manner, Refs. [100, 114] classify
the homomorphisms from line-gap topology to point-gap
topology for all the 38-fold internal symmetry class in
arbitrary spatial dimensions.
Higher-dimensional skin effects.— By contrast,

point-gap topology can be nontrivial even if line-gap
topology is trivial. For example, whereas line-gap
topology is absent in one dimension with and without
time-reversal symmetry [56], the point-gap topology
characterized by Eqs. (1) and (9) is present. As shown
in this Letter, such intrinsic point-gap topology in
finite systems leads to not the BBC but the skin effect.
References [100, 114] also classify the non-Hermitian
topology unique to a point gap. This classification
allows us to know possible types of symmetry-protected
skin effects for general symmetry classes and arbitrary
dimensions. Like surface Dirac fermions in topological
insulators, higher-dimensional skin modes appear in
any boundary of the system under a proper boundary
condition [115].
For example, a two-dimensional variant of the Z2 skin

effect is investigated in Ref. [100]. There, skin modes
coexist with bulk modes under the open boundary con-
dition in one direction and the periodic boundary condi-
tion in the other direction, which is the “proper boundary
condition” in this system. Remarkably, only O (L) skin
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modes appear from all the O (L2) modes in this model (L
denotes the length in one direction), which is unfeasible
for the skin effects in one dimension.

Discussion.— The non-Hermitian skin effect has re-
cently been observed in electrical circuits [89, 92], a me-
chanical metamaterial [90], and quantum walk [91], all
of which we identify are intrinsic non-Hermitian topolog-
ical phenomena. Beyond the observed one, this Letter
predicts novel types of skin effects enabled by symmetry
protection. It merits further research to investigate a va-
riety of symmetry-protected non-Hermitian skin effects
and their new physics.
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