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Abstract: Solar energy is currently a very popular energy source because it is both clean and renew-
able. As a result, one of the main areas of research now is the investigation of solar absorbers with
broad spectrum and high absorption efficiency. In this study, we create an absorber by superimposing
three periodic Ti-Al2O3-Ti discs on a W-Ti-Al2O3 composite film structure. We evaluated the incident
angle, structural components, and electromagnetic field distribution using the finite difference in time
domain (FDTD) method in order to investigate the physical process by which the model achieves
broadband absorption. We find that distinct wavelengths of tuned or resonant absorption may be
produced by the Ti disk array and Al2O3 through near-field coupling, cavity-mode coupling, and
plasmon resonance, all of which can effectively widen the absorption bandwidth. The findings
indicate that the solar absorber’s average absorption efficiency can range from 95.8% to 96% over
the entire band range of 200 to 3100 nm, with the absorption bandwidth of 2811 nm (244–3055 nm)
having the highest absorption rate. Additionally, the absorber only contains tungsten (W), titanium
(Ti), and alumina (Al2O3), three materials with high melting points, which offers a strong assurance
for the absorber’s thermal stability. It also has a very high thermal radiation intensity, reaching a
high radiation efficiency of 94.4% at 1000 K, and a weighted average absorption efficiency of 98.3% at
AM1.5. Additionally, the incidence angle insensitivity of our suggested solar absorber is good (0–60◦)
and polarization independence is good (0–90◦). These benefits enable a wide range of solar thermal
photovoltaic applications for our absorber and offer numerous design options for the ideal absorber.

Keywords: ultra-wideband absorption; high thermal radiation efficiency; metal-dielectric-metal
composite structure; heat emitter

1. Introduction

In the recent past, people have been using more and more energy sources, traditional
fossil energy sources have been in short supply, and people are exploring more and more
renewable energy sources; therefore, as a new renewable clean energy, solar energy has
become the focus of attention [1–3]. There has been extensive research on clean energy
sources including solar energy to solve the energy shortage problem. However, despite
the extensive research on solar absorbers, there are still many shortcomings. For exam-
ple, the absorption band width is narrow, the absorption intensity is not high, and the
structure is complicated, which limits the application of absorbers in solar photovoltaic
and other fields [4–8]. Therefore, it is important to explore a wideband absorber with
good oblique incidence characteristics and polarization angle independence and high
thermal radiation efficiency. Meanwhile, ultra-wideband absorbers based on refractory
materials have great application value because thermophotovoltaic devices need to work
in high-temperature environments.
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The absorber’s ability to absorb has been significantly impacted by various model
structures. Landy first proposed metal-insulator-metal frameworks for narrowband ideal
absorbers in 2008 [9], and the search for perfect absorbers has become the focus of many
researchers, but early metamaterials were designed to achieve single-band or multi-band
absorption [10–12]. At present, there are two methods to achieve broadband absorption
in metal nanostructure absorbers. One is to introduce multiple different nanoresonators
into the unit structure of metamaterial. These resonators’ ability to create many absorption
peaks at various spectral frequencies enables them to accomplish broadband absorption;
nevertheless, their complicated system and demanding technical specifications are disad-
vantages [13]. Adding composite films made of metal dielectric layers on top of one another
is another method for achieving broadband absorption. This absorber is not angle-sensitive
and can achieve mid-infrared band broadband absorption [14]. In 2018, Hu et al. created a
continuous eight-layer metal dielectric film packing arrangement in order to achieve nearly
perfect absorption in the range of 250 to 2000 nm [15]. Despite great absorption efficiencies
in both instances, there is little NIR band absorption.

The efficiency of the absorber in terms of absorbing energy is also strongly influenced
by the difference in materials. Solar absorber studies frequently make use of precious
metals such as Ag, Au, and Cu. Although good absorption can be obtained, the cost is high
and absorbers designed with precious metal materials are more prone to deformation at
high temperatures. The structures based on precious metal absorber materials can also be
deformed under strong light irradiation and lose their original absorption properties [16].
Meanwhile, titanium and tungsten are widely used as refractory metals and alumina. In
2015, using a metal-dielectric composite structure as the foundation, Ding et al. suggested a
film-stacked absorber [17], where metallic material contains the high-temperature-resistant
metal Ti. Simulations and experiments confirmed its high absorptivity, omnidirectivity, and
polarization independence in the whole visible band. For the wavelength range of 400 nm
to 900 nm, the estimated absorption rate is greater than 90%, with an average absorption
rate of 96.03%. In the same year, similar plane cell layer stacking construction with a 99.5%
average absorption rate in the 400–800 nm spectral range was proposed by Li et al. [18]. We
conclude that the high-temperature refractory-based light absorber has great prospects for
this application.

Thermal radiation refers to the electromagnetic waves emitted by objects into the
surrounding space at different temperatures. This radiation is produced by the thermal
motion of molecules inside an object, so it is also called thermal motion radiation. There are
four important laws about thermal radiation: Kirchhoff’s radiation law, Planck’s radiation
distribution law, Stefan–Boltzmann law, and Wien’s displacement law. The wavelength and
intensity of thermal radiation are related to the temperature of the object, and the higher
the temperature, the shorter and greater the intensity of the radiation. Thermal radiation
has a wide range of applications in daily life, such as infrared thermal imagers, energy
conversion in solar panels, thermal radiation temperature measurement and so on [19,20].
As an important physical phenomenon, thermal radiation has a wide range of applications
in daily life and various fields. Through the research and application of heat radiation,
we can make better use of natural resources, improve production efficiency, and ensure
the safety of human life. In this paper, a three-layer periodic Ti-Al2O3-Ti disk structure
is proposed on a W-Ti-Al2O3 composite nanofilm, and the multilayer nanodisk structure
is easy to provide a near-field coupling effect and improve the absorption efficiency. The
structure has an average absorption efficiency of 95.8% and an absorption bandwidth of
2811 nm. More notably, this structure has a high thermal radiation efficiency of 94.4% at
1000 K. This also provides new ideas for the application breakthrough of solar absorbers.

High strength, excellent heat and corrosion resistance, excellent ductility, and low
density are all characteristics of titanium [21]. As a refractory metal, titanium has a high
melting point (1668 ◦C), good stability, and resistance to magnetization under strong
magnetic fields [22]. The most important advantages of tungsten as a refractory metal
are its good high-temperature strength (melting point is about 3410 ◦C) and very stable
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chemistry [23]. The absorber has good stability, its cost is lower than that of precious
metals, and compared with other expensive metals Au and Ag, Ti as a resonant metal can
excite a wider bandwidth response in the infrared band, and it is easier to achieve perfect
absorption in the ultra-wideband [24–26].

Through the aforementioned examples, it was discovered that, despite the fact that
some of the proposed broadband absorbers contain refractory metallic materials, others
also contain noble metals, which lack benefits in terms of thermal stability in addition
to being expensive, and the absorption bandwidth typically does not reach 2000 nm [27].
We proposed a three-layer periodic Ti-Al2O3-Ti disc structure overlaid on a W-Ti-Al2O3
composite film as an ultra-broadband solar absorber to address the aforementioned set
of issues. The bandwidth of this MIM composite structure is effectively extended [28],
and the average absorption efficiency in the entire wavelength range of 200–3100 nm is as
high as 95.8%. The absorption efficiency is better than 90% up to 2811 nm. The three high
melting point materials utilized in the model offer a solid assurance for the thermal stability
of the absorber. Additionally, the absorber has a very high thermal radiation intensity,
with a weighted average absorption efficiency of 98.3% (AM1.5) and a radiation efficiency
of over 90% at 1000 K. As a result, when compared to other absorbers, our proposed
absorber has excellent potential for use in the field of energy harvesting technologies, such
as high absorption, broadband, and high-temperature-resistant metal-dielectric composite
structures and solar thermal photovoltaics.

2. Structure and Design

We model a stacked cubic solar absorber made of metal and dielectric materials
using the FDTD technique [29,30]. In order to obtain high simulation accuracy, we chose
the Al2O3 as the dielectric layer in the FDTD algorithm and determined the dielectric
constants of Ti and W using experimental data of Palik [31]. In this study, we propose
an absorber structure, as shown in Figure 1a, is made up of three Ti-Al2O3-Ti nanosheets
of varying radii and W-Al2O3-Ti films. We employ the refractory material W, which
melts at 3420 ◦C, and the refractory metal Ti, which melts at 1668 ◦C. The structure at
high-temperature work is unaffected since the dielectric layer, Al2O3, is also an insoluble
substance at high temperatures.

We used a plane wave with an incidence wavelength of 200–3100 nm that was parallel
to the x-axis in the simulation computation. With a grid precision of 2, periodic boundary
conditions, an endlessly distributed periodic array in the x and y directions, a perfectly
matched PML layer in the z direction, and a light source incident in the opposite direction
of the z axis; we used these techniques in our simulation model. The absolute symmetry
of the absorber renders it polarization insensitive. Our developed structures have heights
of H1 = 220 nm (W), H2 = 240 nm (Ti), and H3 = 50 nm (Al2O3). The metal thickness of
the composite disk structure is H4 = 45 nm and the dielectric thickness is H5 = 30 nm. Our
absorbing disk has a radius of R1 = 160 nm, R2 = 120 nm, and R3 = 80 nm, and its structural
period is P = 400 nm, as shown in Figure 1a,b. The value of the light absorption A(ω)
is equal to A = 1 − T(ω) − R(ω) [32–35], and since our substrate material is an opaque
material W, the transmittance T is completely cancelled, indicating that the spectrum
T(ω) = 0. Therefore, the absorption A(ω) can be obtained by 1 − R(ω) [36]. Figure 1c
shows a schematic diagram of the preparation process and flow of the solar absorber.
In preparing the solar absorber, we can first deposit Ti (240 nm), Al2O3 (50 nm) thin
film by ion beam sputtering on the surface of W (220 nm) substrate, and then deposit Ti
(45 nm) - Al2O3 (50 nm) - Ti (45 nm) composite thin film structure by magnetron sputtering.
Finally, the desired microstructure can be obtained by photolithography and electron
beam evaporation.
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Figure 1. (a) An illustration of the perfect absorber in 3D. (b) The ideal absorber’s XOY and XOZ
plans. (c) A tangible illustration of the manufacturing procedure for the ideal absorber.

3. Results and Discussion

Planar light’s incident light line was chosen to be in the 200–3100 nm range. Figure 2
displays the simulation findings from this effort. Figure 2a displayed the simulation’s
outcomes. The bandwidth is 2811 nm in the wavelength range of 244–3055 nm, and the
absorption rate is better than 90%. From 200 nm to 3100 nm, the average absorption rate is
95.8%, and the NIR absorption loss after 3055 nm is primarily focused in the NIR area. In
order to conduct the investigation, we chose three bands with a high absorption intensity, so
as to facilitate the subsequent analysis of why we can obtain such good results. λ = 401 nm,
671 nm, and 1988 nm, were selected, and their absorption intensity arrived at 99.88%,
99.80%, and 97.64%, respectively.
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The spectrum absorption coefficient is an important metric to assess a solar absorber’s
capacity to capture heat [37]. Equation (1) is the formula for the entire solar energy spectrum
incident at AM1.5 [38].

ηA =

∫ λmax
λmin

A(ω)·IAM1.5(ω)dω∫ λmax
λmin

IAM1.5(ω)dω
(1)

where Ibe(ω, T) is the intensity of frequencyω and temperature T of the ideal blackbody
optical spectrum. In comparison to the ideal blackbody model, the thermal emitter exhibits
almost perfect emission intensity in the wavelength range of no more than 3100 nm for this
solar absorption system at a temperature of 1000 K. A new method of realizing blackbody
thermal emission or light source is made possible by the thermal emitter’s up to 94%
emission efficiency in the 280–3100 nm spectrum. Where Ibe(ω, T) is the intensity of the ideal
blackbody optical spectrum at frequency ω and temperature T [39]. To be able to highly
match the solar radiation, we extend the spectral range from the ultraviolet to the infrared
range. The minimum (λmin) and maximum (λmax) wavelengths are 200 nm and 3100 nm,
respectively, and the thermal emitter exhibits almost perfect emission intensity in the
wavelength range up to 3100 nm in this solar absorption system at a temperature of 1000 K
compared to the ideal blackbody model. The emission efficiency of the thermal emitter
of up to 94% in the spectrum of 280–3100 nm makes it possible to realize new methods of
thermal emission from black bodies or light sources. Using previously published works
on solar absorber [40–44], Table 1 provides a comparison of their performance. Compared
with these solar absorbers, we can see that the proposed structure has better performance.

Table 1. Performance comparison between different absorber designs proposed in previous publications.

Reference Construction
A Range of Wavelengths
with Absorbance Greater

than 90%

Absorption
Effectiveness
on Average

The Average AM1.5
Absorption Efficiency

[40] TiN disc-square
ring resonator 2200 nm 94.0% 89.0%

[41] Ti-SiO2-Ti 1650 nm (250–3000 nm) (250–3000 nm)

[42] A layered elliptic structure 1868 nm 93.3% 88.2%

[43]
Two-dimensional colloidal
arrays and semiconductor

germanium voids
1100 nm (295–2500 nm) (295–2500 nm)

[44] Bihexagonal metamaterial
and Si ring column structure 1200 nm 90.0% 88.0%

Proposed Two Ni disk structures of
different sizes are used 2811 nm (250–3500 nm) (250–4000 nm)

In addition to calculating and examining the physical mechanism underlying solar
absorber broadband absorption, this study also makes an educated guess regarding the
distribution of electric field intensities among these three absorption peaks. The electric
field strengths of the three absorption peaks’ XOY and XOZ cross sections are shown in
Figure 3. When λ = 401 nm, as depicted in Figure 3a,d, the majority of the electric field is
concentrated on the sidewalls of the nanodisk, and the space between the absorber units
can be thought of as resembling a cavity structure. Under the action of incident light, cavity
film resonance is formed in the cavity. Due to the formation of resonances in the cavity
membrane, the energy is bound in the cavity, significantly enhancing the electric field
there [45,46]. Therefore, it is reasonable to suppose that oscillations outside of the structure,
at which the incident light interacts between adjacent disks through the excited cavity
modes at this wavelength, are the primary cause of the absorption in the near-UV region.
The connection gap region between the Ti and Al2O3 films and the angular surface region of
the perfect absorber nanodisk array have significant electric fields at 671 nm, and plasmon
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resonance also occurs at this wavelength. When the wavelength is 1998 nm, according
to Figure 3c, the surface plasmon intensity rises (f). Due to the incident light’s growing
wavelength, as shown in Figure 3c,f, Al2O3’s plasmon resonance at 1998 nm is more excited.
Excitation cavity coupling was performed for films with R = 160 nm, 120 nm, and 80 nm,
while high plasmon resonances were found around the nanodiscs of the MIM structure.
The discs with different radii and their near-field coupling caused strong absorption in the
near-infrared band. We can, therefore, conclude that the ultra-wideband absorption effect,
which can be produced by excitation of various wavelength harmonic oscillator absorption
or tuning absorption, can be created via the cavity mode coupling of the structure, the
near-field coupling, and the plasmon resonance between the Ti disk array and Al2O3.
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(d–f) Three absorption peaks on the XOZ plane′s electric field distribution.

In Figure 4, we also show the distribution of the magnetic field strength within the
cell structure for incident light with wavelengths of 401 nm, 671 nm, and 1998 nm to
further demonstrate the mechanism of broadband absorption. According to Figure 4, when
the incident wavelength is not large, on the edge of the composite component structure
layer and in several adjacent composite layers are where the magnetic field is mostly
found. The magnetic field gradually grows at the composite layer’s edge with increasing
incident wavelength and is primarily distributed in numerous nearby composite element
constructions at the bottom. Because the composite layers of Ti and Al2O3 form the MIM
structure, it is the physical basis of the exciton [47]. Moreover, in this unit structure, the
radius of the disc of the composite layer decreases gradually from the bottom to the top, and
the exciton excitation wavelength is connected with the radius of the disc of the composite
layer in the unit structure. Therefore, as the wavelength increases, the position of the
exciton in the unit structure gradually shifts downward. The multiple disc radii of the
composite layer correspond to the multiple excitation wavelengths of the exciton, so that
broadband absorption can be achieved.
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Figure 4. (a–c) is the intensity of the electromagnetic field distributed in one period at different
resonant wavelengths in the XOY plane. (d–f) is the intensity of the electromagnetic field distributed
in one period at different resonant wavelengths in the XOZ plane. The wavelengths are: 401 nm,
671 nm, 1998 nm.

A key parameter to evaluate the heat resistance of ideal absorbers is full spectrum
absorption. By putting the absorber in air, we attempt to determine the whole spectral
absorption rate (AM1.5). The mass of the perfect absorber is 1.5 at 1000 K, the black is the
lost energy, and the red is the absorbed energy. According to Figure 5b, the energy spectra of
the solar absorber are shown in red, while the energy spectra of the 1.5 air mass are shown
in black. In the 280 nm to 3100 nm region, the weighted average absorption efficiency is
up to 98.3%, and the loss is incredibly tiny. The experimental results demonstrated a mod-
erate absorption rate over the whole spectrum for the proposed solar absorber. Figure 5c
describes the solar absorption system’s exothermic characteristics at a high temperature
of 1000 K. According to Kirchhoff’s law, the thermal emission ε(ω) is equivalent to the
absorption A(ω). Since the transmittance of the opaque metal is equal to zero, the spectrum
ε(ω) can be related to the following law, ε(ω) = 1 − R(ω). For thermal emission based on
Planck’s law, the thermal emissivity (ηE) can be expressed as Equation (2) [48,49]:

ηE =

∫ λmax
λmin

ε(ω)·Ibe(ω, T)dω∫ λmax
λmin

Ibe(ω, T)dω
(2)

The ideal blackbody spectrum’s intensity at frequencyω and temperature T is repre-
sented by the notation Ibe(ω, T). As observed in Figure 5c, the emitter’s emission intensity
is nearly perfect and its emission efficiency is higher than that of the ideal blackbody model
in the wavelength range of 2000 nm. This indicates that a refractory-based blackbody
emitter or light source is feasible and substantial.
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In this paper, six different structures of solar absorbers were studied, their spectral
absorption properties were compared, and the optimal absorption spectra were obtained.
The fire-resistant solar absorber has multiple resonance points in the range of 200–3100 nm
and superimposed on each other to form multiple absorption peaks. Therefore, the average
absorbance of the absorber [50] can be defined as

Aaver =

∫ λmax
λmin

A(λ)dλ

λmax − λmin
(3)

where A is the absorbance at that wavelength, and the maximum and minimum values
of the incident wavelength are expressed as λmax and λmin, respectively. According to
the above equation, the average absorbance of the metamaterial solar absorber in the
200–3100 nm band is 95.8%.

The computed average absorption efficiency and the absorption spectra of the ab-
sorbers with various configurations are presented in Figure 6a,b, respectively, to highlight
the advantages of the proposed absorber structure. As shown in Figure 6a, it operates
well in the near-UV and visible bands when the MIM structure of the top layer of the ab-
sorber is switched out for an IMI grating structure, but it gradually degrades in the near-IR
band and all the mid-IR bands, with an average absorption efficiency of 88.4%. When the
upper stacking discs of the absorber were all of the same material Ti, the absorption in
the near-infrared band dropped to below 90%. Even though it increased subsequently,
the mid-infrared band’s average absorption fell to 92.3%, dropping below 90% once more.
The UV band absorption is lower, below 90%, with an average bandwidth absorption
of 94.2% when the absorber only contains the first and second layers of the composite
disk structure. The absorption in the entire band is almost less than 90%, particularly
in the mid-infrared band, when the MIM structure of the upper layer of the absorber is
replaced by a composite disk structure of the same radius and thickness [51]. When the
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bottom structure of the absorber has no substrate W, the overall absorption performs well,
but absorption rates in the mid-infrared band start to drop below 90%, which limits the
absorption in the ultra-wideband absorption. Comparatively, the results showed that the
solar absorber based on the three-layer MIM stacked structure had an average absorption
efficiency of 95.8%, good overall absorption efficiency, with the largest absorption band
being 2811 nm.
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Additionally, we contrasted the thermal emission effectiveness of several models at
1000 K. Case 5’s overall absorption rate was too low, so we immediately dismissed it.
Case 4’s absorption rate in the UV band was likewise too low, restricting the broadband
range of our absorber, so it is also not considered. Therefore, as shown in Figure 7, we
compared the thermal emission plots of the four models for Cases 1, 2, 3, and 6. As seen
in Figure 7a, Case 1’s thermal emission efficiency significantly declines from the near-
infrared region, with the average thermal emission efficiency for the entire band being just
80.5%. In Figure 7b, Case 2 has good overall thermal emission efficiency, and the average
thermal emission efficiency in the whole band is 92.4%, but it is still slightly poor in the
mid-infrared band. The thermal emission efficiency of Case 3 proposed in this paper is
stronger and nearly perfect; as shown in Figure 7c, the average emission efficiency in the
whole band is as high as 94.4%. We then observe Figure 7d for Case 6 in which the structure
of removing the substrate W, the average thermal radiation efficiency is 93.9%, the overall
thermal radiation efficiency does not change much, but the maximum radiation efficiency
and average thermal emission efficiency are lower than Case 3, which is slightly inferior.
We ultimately decided that Case 3 is the best structure, serving as the ultra-broadband
ideal absorber and thermal emitter in this study, after taking into account the absorption
efficiency, broadband absorption, and thermal emission efficiency of the aforementioned
various designs [52,53].

Several main structural parameters affecting the absorption rate are discussed. When
the first nanodisk’s radius is R1, as shown in Figure 8a, the absorption efficiency increases
from 140 nm to 180 nm. The absorption effectiveness is shown in Figure 8b when the
second nanodisk’s radius R2 grows from 100 nm to 140 nm. The third layer composite
structure’s absorption effectiveness, with radius R3 in the range of 60 nm to 100 nm, as
shown in Figure 8c. As can be seen in the figure, it is discovered that increasing the
radius has a more pronounced impact on the near-infrared band while having less of an
impact on the near-UV-visible band. We take into account how the nanodisk’s radius
affects the effectiveness of its absorption [54–56]. The absorption curve for the change in
nanodisk radius is shown in Figure 8a–c. When the radius of the nanodisk is small, the
high interstructure plasma spacing, small size, and weak near-field coupling effect result in
a narrow absorption band and a weak broad absorption strength. The near-field coupling
effect between the structures strengthens as the radius rises, increasing the broadband
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absorption of the spectrum similarly to how the average absorption efficiency does [57–59].
However, the absorption effect in the 200–2000 nm band becomes worse as the radius
increases. Thus, after taking into account the overall absorption efficiency, we arrived at
the final radius values of R1 = 160 nm, R2 = 120 nm, and R3 = 80 nm.
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The figure also demonstrates that altering the Al2O3 nanofilm’s thickness can change
the bandwidth range of the absorber, offering a fresh approach to modifying the broad
frequency range of the absorption spectrum and enhancing the band’s overall absorption
efficiency. The near-infrared absorption rate increases with nanosheet thickness between
the wavelengths of 500 nm and 1200 nm, and its absorption efficiency approaches 100%.
The absorptivity in mid-infrared region decreases with the increase in thickness. After
comprehensive consideration, the final parameter H3 = 50 nm was selected to obtain
the best possible absorption efficiency. The final values are R1 = 160 nm, R2 = 120 nm,
R3 = 80 nm, and H3 = 50 nm for the dielectric layer. We ultimately conclude that the
period is P = 400 nm since the structure period has a similar impact on the absorption
outcome as the radius and because the plasma’s near-field effect [60] also affects the final
absorption effect.

We know that in a real environment, natural light cannot be vertically incident on a
solar absorber, as it would be in an ideal situation [61–64]. Therefore, it is important to
talk about how different polarization and incidence angles affect the performance of solar
absorbers. As shown in Figure 9, we simulated the absorption spectra using incidence
angles between 0◦ and 60◦ and polarization angles between 0◦ and 90◦, respectively.
As can be observed from the figure, the produced absorber has an excellent effect with
extraordinary absorption efficiency in the incidence angle range of 0◦ to 60◦ and has
no effect on the change in incidence angle. Because of the high geometric symmetry of
the structure, the absorptivity remains high over the whole wavelength range for the
polarization Angle [65–67]. With stronger oblique incidence and polarization insensitivity,
the absorber’s performance has generally increased greatly [68].
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4. Conclusions

A metal-dielectric-metal composite structure was used in the design of our ultra-
wideband solar absorber. It is composed of W-Ti-Al2O3 film composite structure and
three Ti-Al2O3-Ti disks with different radii. We make use of the refractory substance W,
which melts at 3420 ◦C, and the refractory metal Ti, which melts at 1668 ◦C. Because the
dielectric layer Al2O3 is also a high-temperature insoluble substance with a melting point
of 2054 ◦C, the structure works without any influence at high temperatures. The structure
achieves an almost perfect absorption bandwidth of 2811 nm (244–3055 nm) with an average
absorption efficiency of 95.8% in this range when taking into account the absorption rate and
bandwidth. The main reason for achieving this ultra-wideband absorption characteristic
is the synergistic effect of guided-mode resonance, surface shaping, and cavity mode
in this wavelength range. Additionally, according to the air mass absorption spectrum
equation (AM1.5) and the blackbody radiation calculation, our absorber’s weighted average
absorption efficiency in the range of 280–3100 nm is 98.3%, and the solar energy loss is
only 1.7%. At 1000 K, the emission efficiency is 94.4%. The structure has good absorption
and thermal radiation properties, and exhibits strong polarization angle and incident
angle insensitivity. In addition, this ultra-wideband absorption property is highly plastic
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in terms of structural period, thickness of each layer, disc radius, and metallic material,
and has great potential for thermal energy harvesting, thermoelectronic components, and
optical imaging.
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