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ABSTRACT

We discuss some elementary
consequences of the fact that all
excited 1levels 1in dual resonance
models are fundamentally unstable.
Our results are relevant in order
to undersfandther@le of unitarity

in the framework of these schemes.
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1)

for the scattering amplitude of any number of scalar particles which

The dual resonance model presently under study is an ansatz
satisfies most of the general properties one would like to associate to
the S matrix of strong interactions. As is well known, the most appa-
rent shortcoming of this model is its lack of unitarity, a property which
is necessarily lost in the limit of infinitely narrow resonances. We
shall not discuss problems connected to the fact that some of the excited
states of the theory have imaginary coupling ("ghost" states). A compen-
sation mechanism for these states has been found 2 and 1t is not im-
possible that dual amplitudes can be constructed which are completely
"ghost" free. In the following we shall disregard the complications due

to the possible presence of those unphysical states.

3),4)

Attempts have already been made by several groups in order

to build up a unitarization procedure in this framework. The most ambi-

tious of such programmes is based on the idea 4)

that the starting tree
approximation is some kind of a Born term and that unitarity is auto-
matically enforced in a perturbation manner by computing higher order
loop contributions 5). More precisely, if we associate the coupling
constant f with each vertex, the n point amplitude will be of ozrder
fn—z. The sum of all possible loops will give rise to a power expansion
in f in which unitarity is satisfied consistently at each order. At
any finite order, unitarity wiil hold in the Hilbert space of many
excited (stable and unstable) states, but, at the end, unitarity in the
complete space of all stable (asymptotic) states will, hopefully, be
recovered. Conventional field theory seems to support this point of

view.

There is, however, an important difference between the dual
models and conventional field theory. Indeed, in our case all excited
states are fundamentally unstable. As a consequence, many experimental
quantities cannot be estimated without introducing a width right from
the beginning. A general treatment of perturbation graphs with unstable
particles has been given by Veltman in the framework of conventional

*
field theory ). It will be very interesting to extend this treatment

*) We thank Professcrs M. Veltman 6) and L., Van Hove for having
illustrated some of the important aspects of this problem.
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to dual resonance models. Waiting for a completely general treatment
of the problem, we want to make some elementary remarks which exhibit

some of the new features coming from unstability of the excited levels.

The situation is best illustrated in the following example.
Consider the production amplitude a+b—c+d+e of Fig. 1. The corres-
ponding five-point function has pole-type singularities in the final

subenergies, €.ge.,

b < Y

Fig. 1

in (Pd+Pe)2, corresponding to the squared mass of some excited level.
If the incoming energy is not too low, some of those poles will be in the
physical region and therefore, when integrating over the final momenta

in order to get the cross—-section, one will find an integral of the form :
2
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Equation (1) shows that the cross—-section diverges as 1/r-R when
l..R

*
the unmodified five-point function >. Of course, the physical way to get

—03; 1in particular, the integral does not exist if we use directly

around this difficulty consists in giving a finite total width to each

unstable level. Such a width will be related through unitarity to the

total decay rate of the unstable level. In other words, the width will
depend again on the coupling constant f. This means that the cross-—

section for the process under consideration will have the form

*) In the V +treatment this infinity is seen to cancel against
similar terms appearing in some higher connection to two-
particle production.
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where the integral I depends on f through the widths of the resonances
and I(f)f:oa>. The presence of a non-zero width has thus as a consequence
that the cross—section does not have a simple power (f6) dependence on f.
In this letter we want to examine some elementary consequences of this

new feature coming from the presence of unstable particles. The outcome

is, in our opinion, both trivial and interesting.

Consider first the calculation of a total cross—section
O’ (a+b—anything). We wish to stress that for us only the stable multi-
particle final states can appear in the definition of "anything". For
a definite multiparticle final state (which we denote by X) the
scattering amplitude will have contributions of the form (see Fig.2)
a+b - resonance »X. These are not the only contributions; however, as
we shall see later, other terms although quite interesting will lead to

final results of higher order in f.

Fig. 2

In a strict narrow resonance approximation, we can write for the

scattering amplitude

b
(T:b_.x = 2 Yoo —‘---fo, ()

where the label r denotes the different states of mass2 = S, Again,
in order to compute a finite cross-section, we have to assign a finite
width to each resonance. Choosing as intermediate states the eigen-

states of the mass matrix, we can rewrite the correct formula as



'-T:b_.x = Z YWb — i Y:v- (4)
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The total cross—-section will then Dbe
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However, because of unitarity
= lyx | (®)
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so that finally we find
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The second equality does not hold in a strict local sense but only after
integration of the two sides in s over regions large with respect to

f" . If we now recall the form of T(ab—»ab), factorized in its s

channel resonances, we realize immediately that

IMT\s-u.k = Z. (f )LS(S"S"\) o Ot (8)

The physical meaning of Eq. (7) is clear in the limit of narrow resonances.
Once a narrow resonance is created, the final outcome of it is of no in-
terest for the total cross-section which is simply given by the integrated
probability of formation of any "compound" excited particle. This result
was therefore to be expected on physical grounds. What is more surprising
is Eq. (8), which states that the optical theorem applied to the "non-
unitarized" four-point function already leads to a reasonable estimate of

the total cross-section (as far as counting of orders in f2 goes).



We stress again, however, that due to the huge number of states in
the theory, the second equality in Eq. (7) will certainly not hold locally
but only in the integrated sense explained above, especially at high energy.

A more satisfactory way of writing Edq. (8) will then be

c;'.e = [I‘MFT:\.-)@\' ] )

Gdlg‘ﬂcbdbe.

It is well known that such an average is just given by a Regge
2 .
formula, so that, to lowest order in f , the forward Regge term gives

the total cross—-section at high energy (i.e., satisfies the optical

theorem).

The result given in Egs. (8) and (9) can be generalized in a
straightforward manner once we realize that the initial and final states
(which in our example were both equal to a+b) do not play any special

role. We find therefore to lowest order in the coupling constant

; <Al THn)<nl T 1B) =[Im <AI'T’IB7] (10)

‘\V!\PGLQC.
where ]n> are the stable intermediate states.
Let us make now a few observations about our results :
1) Equation (10) shows that the dual multiparticle amplitudes

without loops, if correctly interpreted, contains already in

it important contributions from unitarity : to lowest order

in f2 it is already "unitary" ! We shall discuss at the end
what the main higher order corrections will be. We also remark
that this approximate unitarity is obtained from very general
properties of the dual resonance model, i.e., from the fact
that the general amplitude factorizes completely 7) and that
resonance widths are supposedly small., It is not hard to
realize that, given a definite resonance model, all widths can
be calculated directly in terms of f2 and therefore the
assumption of small widths can be in principle checked a

posteriori.
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2) Arguments based cn power counting in the coupling constant in
analogy with conventional perturbation theory may lead to mis-
leading results. As an example, the leading contribution to the
total cross-section for production of n particles is of order
f2 whereas conventional power counting would give f2n. As a

consequence, the physical basis of the loop approach to unitarity

(which is essentially based on such perturbative power counting)

should be carefully re—examined.

We now add a few remarks on higher order corrections in the
coupling constant. We expect two kinds of such corrections. The first
will be to give rise to higher effects in mass shifts and widths of
resonances. Those effects will be responsible for the details of the

averaging process and will be probably rather hard to compute.

The second, more important effect, will come when we consider
those components of the dual amplitudes in which the initial and final
states ]A> and B> of Eq. (10) cannot produce a single resonance. As
an example, consider again the case of elastic two-body scattering
|A>>=|I£>=la+b>. There are contributions to the total cross—section
coming from terms like the one of Fig. 3, where the twist (denoted by a

cross) does not allcw the two regsonances R and R to collapse into

1 2
o X

>, Fig. 3

a single one. By the arguments given before the lowest order contri-

bution of this diagram to the total cross-section (of order f4) is

given by the s channel imaginary part of the non-planar loop of Fig. 4.

s ~

Fig. 4
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Begsides other effects, this contribution to the total cross—-section
hopefully will give diffractive effects (Pomeron exchange) in agreement
with the Harari-Freund point of view 8). Actually a number of authors 9)
have already considered this diagram to be associated with the Pomeranchuk

singularity.
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