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ABSTRACT 
Cancer imposes a global health burden as it represents one of the leading causes of morbidity and mortality while 
also giving rise to significant economic burden owing to the associated expenditures for its monitoring and treat-
ment. In spite of advancements in cancer therapy, the low success rate and recurrence of tumor has necessitated 
the ongoing search for new therapeutic agents. Aside from drugs based on small molecules and protein-based 
biopharmaceuticals, there has been an intense effort geared towards the development of peptide-based therapeutics 
owing to its favorable and intrinsic properties of being relatively small, highly selective, potent, safe and low in 
production costs. In spite of these advantages, there are several inherent weaknesses that are in need of attention 
in the design and development of therapeutic peptides. An abundance of data on bioactive and therapeutic peptides 
have been accumulated over the years and the burgeoning area of artificial intelligence has set the stage for the 
lucrative utilization of machine learning to make sense of these large and high-dimensional data. This review 
summarizes the current state-of-the-art on the application of machine learning for studying the bioactivity of anti-
cancer peptides along with future outlook of the field. Data and R codes used in the analysis herein are available 
on GitHub at https://github.com/Shoombuatong2527/anticancer-peptides-review.    
 
Keywords: cancer, anticancer, antitumor, anticancer peptides, host defense peptides, bioactivity, machine learn-
ing, QSAR 
 
 
 

INTRODUCTION 

Cancer is now regarded as the second 
leading cause of death, and remains a major 
cause of morbidity throughout the world (Ar-
nold et al., 2015) with lung, liver, colorectal, 
stomach and breast cancer representing the 
most common types of cancers occurring 
worldwide (WHO, 2018a). Estimates from 
GLOBOCAN indicate that about 14.1 million 
new cancer cases encompassed approxi-
mately 8.8 million deaths in 2015 (Ferlay et 
al., 2015; WHO, 2018a). In addition, the main 

mechanisms by which cancers are formed in-
clude abnormal, uncontrollable cell growth 
that leads to the formation of tumors which 
can then undergo angiogenesis and continue 
to become metastatic (Felício et al., 2017). 
Despite recent advances in cancer treatments, 
such as radiation therapy, targeted therapy or 
chemotherapeutic agents (Thundimadathil 
2012), they have a relatively low success rate 
and present a risk of recurrence. For instance, 
the process of killing cancer using chemother-
apeutic agents is often associated with delete-
rious effects, including damages to normal 
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cells and tissues, and lead to chemical re-
sistance whereby adaptation mutations of 
cancer cells may occur (Hoskin and Rama-
moorthy 2008). Therefore, the discovery and 
development of a new class of anticancer 
drugs has become crucial. Furthermore, the 
situation has become worse due to the fact 
that many new cancers arise from bacterial 
and viral etiological agents (Vedham et al., 
2014). This fact coupled with the increase in 
antimicrobial resistance (AMR), especially 
the multidrug resistant variants, has raised 
concern. To this effect, the WHO has empha-
sized an urgency for the discovery of new 
therapeutic agents (WHO, 2018b). 

Peptide therapeutics have attracted great 
interest for development as drug candidates as 
they are regarded to be safe, efficacious, 
highly selective with good tolerability as well 
as exhibit attractive pharmacological profiles 
(Craik et al., 2013; Vlieghe et al., 2010; Lau 
and Dunn, 2018; Fosgerau and Hoffmann, 
2015). A summary on the strengths and weak-
nesses of therapeutic peptides are provided in 
Figure 1. Owing to their intrinsically smaller 
size as compared to protein-based biopharma-
ceuticals, peptides are therefore more eco-
nomical to produce due to lesser production 
complexity (Fosgerau and Hoffmann, 2015) 
while at the same time possess more agility in 
their pharmacokinetics. The aforementioned 
properties are distinguishing features that set 
them apart from small molecules-based drugs 
and protein-based therapeutics. Thus far, 
there are more than 7,000 naturally occurring 
peptides in existence that have been shown to 
afford a wide range of bioactivities (e.g. tu-
mor homing, antihypertensive, antiparasitic, 
antiviral, antiangiogenic, antibiofilm, antimi-
crobial, anticancer, etc.) that can conse-
quently be applied to target various diseases 
such as cancer, diabetes, cardiovascular dis-
eases, etc. (O’Brien-Simpson et al., 2018; Jin 
and Weinberg 2018; Karpiński and 
Adamczak 2018). As of now, 60 peptide-
based drugs have been FDA-approved (Us-
mani et al., 2017) while another 150 peptides 
(Lau and Dunn 2018) are currently in the 
pipeline of preclinical and clinical studies. 

The breakthrough discovery of cecropin, 
the first antimicrobial peptide (AMP) (i.e. iso-
lated from injecting silk moth, Hyalophora 
cecropia, with bacteria) was reported by Stei-
ner et al. (1981). In another landmark study 
conducted by Zasloff (1987), AMPs from the 
African clawed frog, Xenopus laevis, were 
isolated and characterized for their role in the 
immune defense and is known as magainins. 
Since then, thousands of AMPs have been 
found in almost all living organisms such as 
plants, bacteria, fungi, animals etc. (Li et al., 
2012). Over the past decade, the use of AMPs 
as therapeutic agents for treating diseases 
have increased constantly. 

The process of understanding the im-
portance of AMPs might be useful for the dis-
covery of new and resistance-free therapies 
for infectious as well as non-infectious dis-
eases. Antimicrobial peptides constitute a 
mechanism of immune defense of the innate 
immune system with low antigenicity (Iwa-
saki et al., 2009; Pasupuleti et al., 2012) that 
can be found in numerous eukaryotic organ-
isms of different species (Reddy et al., 2004). 
More recently, research on AMPs have eluci-
dated that these peptides also provide anti-
cancer activity and thus termed anticancer 
peptides (ACPs). ACPs have been found to 
exhibit short time-frame of interaction (i.e. 
decreases the probability of resistance), low 
toxicity (i.e. not devoid of side effects as it 
may harm normal cells), specificity, good sol-
ubility as well as good tumor penetration 
thereby indicating the great potential for the 
use of ACPs in cancer therapy (Domalaon et 
al., 2016; Gaspar et al., 2015; Figueiredo et 
al., 2014; Riedl et al., 2011).  

Since they are not traditional drugs, the 
clinical development of therapeutic peptides 
face numerous challenges owing to their 
weaknesses as summarized in Figure 1. Sta-
bility of peptides (i.e. lack of correlation be-
tween in vitro experiments and its efficacy in 
in vivo models) is a challenging issue. In spite 
of this, promising results have been sparingly 
been demonstrated in some animal studies 
(Makobongo et al., 2012; Deslouches et al., 
2007; Berge et al., 2010; Camilio et al., 2014; 



EXCLI Journal 2018;17:734-752 – ISSN 1611-2156 
Received: June 20, 2018, accepted: July 10, 2018, published: July 25, 2018 

 

 

736 

Figure 1: Strengths and weaknesses of therapeutic peptides. Concepts summarized from Fosgerau 
and Hoffmann, 2015. 

 
Makovitzki et al., 2009) in which good effi-
cacy of peptides were able to establish in vitro 
stability with bioavailability in animal mod-
els. Another major drawback of therapeutic 
peptides is their poor oral bioavailability. This 
can be addressed by conjugating the peptide 
with a delivery system that allows it to bypass 
the digestive system and thus, enhance the 
pharmacokinetic properties of such peptides. 
Several studies have been conducted on the 
modifications and/or conjugations (e.g. sub-
stitution with non-canonical amino acid, pep-
tide-peptide hybridization, target or polymer 
modification, PEGylation etc.) of therapeutic 
peptides (Narayana et al., 2015; Braunstein et 
al., 2004; Papo and Shai, 2003; Hu et al., 
2016; Spinks et al., 2017; Kelly et al., 2016; 
Li et al., 2016). Another concern is the short 
half-life of peptides. However, it should be 
noted that it is this particular characteristic of 
therapeutic peptides that allows it to escape 
resistance unlike other oncogenic therapies. 
However, research on improving the half-life 
of peptides without compromising their po-
tency is currently an active area of research 
(Hao et al., 2015; Podust et al., 2013; Schel-
lenberger et al., 2009; Garay et al., 2012; Pen-
chala et al., 2015). Despite some limitations, 

no other class of peptides have been able to 
surpass the multi-functionality of bioac-
tive/therapeutic peptides and thus, these pep-
tides possess high potential for use in many 
avenues of clinical applications. 

The post-genomic era has brought about 
the birth of several omics (e.g. peptidomics, 
proteomics, glycomics, transcriptomics, in-
teractomics, etc.) in our attempts to under-
stand the fundamentals of life and how we can 
contribute to sustainability and the improve-
ment of the quality of life (i.e. development of 
new diagnostics, therapeutics, etc.). These 
data are amassing at an exponential rate with 
no slowing down in hindsight, which sets the 
stage for the utilization of machine learning in 
making sense of these data and translating 
them into useful and actionable insights. 
There have been extensive reports on the uti-
lization of machine learning approaches for 
correlating the sequences of therapeutic pep-
tides with their biological activity (Shi et al., 
1998; Nagarajan et al., 2006; Alam and Khan, 
2014; Mohseni Bababdani and Mousavi, 
2013; Tong et al., 2014; Li et al., 2017). A re-
view of the literature indicated that there are 
currently no review articles concerning the 
use of machine learning and quantitative 
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structure-activity relationship (QSAR) as ap-
plied to therapeutic peptides. However, there 
are a few review articles examining the use of 
QSAR for studying the biological activity of 
peptides at the general level particularly with 
emphasis on food protein-derived bioactive 
peptides (Nongonierma and FitzGerald 
2016), peptides in general (as well as proteins 
and nucleic acids) (Zhou et al., 2008), pep-
tides in general (as well as chemical mole-
cules and proteins) (Du et al., 2008). In a se-
ries of recent articles, Lee et al. ( 2016, 2017, 
2018) examined another facet on the use of 
machine learning (i.e. particularly support 
vector machine) together with targeted exper-
iments (i.e. killing assays and small-angle X-
ray scattering (SAXS) experiments) to ex-
plore the membrane activity in undiscovered 
peptide sequence space in which the aim was 
not on the antimicrobial activity but on the 
membrane curvature that is necessary for the 
activity and the subsequent relationship to se-
quence homology. 

To the best of our knowledge, this review 
article represents the first systematic review 
on the utilization of machine learning for 
studying the bioactivity of anticancer pep-
tides. It is hoped that this review would help 
contribute to further growth and expansion of 
the field by providing readers with the current 
state-of-the-art of the field as well as expected 
future trends and outlook. 

 

ANTICANCER PEPTIDES 
ACPs are small peptides that usually con-

tain 5 to 50 amino acid residues while pos-
sessing high hydrophobicity and a positive net 
charge (i.e. cationic in nature) (Melo et al., 
2011). Thus, ACPs can interact with anionic 
cell membrane components of cancer cells 
and then selectively kill cancer cells. Addi-
tionally, ACPs can interfere with cancer cells 
by causing apoptosis mediated via mitochon-
drial disruption (Chen et al., 2001), triggering 
necrosis via cell lysis (Papo et al., 2006), 
stimulate the immune system of the host and 
prevent tumor angiogenesis (Al-Benna et al., 

2011). Being a subset of AMPs, the character-
istics of ACPs are very similar. However, the 
physicochemical properties that drive some 
AMPs to possess anticancer activity is still 
unclear and more research is needed to under-
stand these differences and help drive specific 
designs of ACPs. There have been a number 
of AMPs encountered in nature that possess 
anticancer activity, such as Aurein 1.2 
(GLFDIIKKIAESF) a peptide isolated from a 
frog species (Litoria aurea), represents an 
AMP with antibacterial activity which was 
also highly active towards 55 different cancer 
cell lines in vitro, without any significant cy-
totoxicity (Rozek et al., 2000; Dennison et al., 
2007; Giacometti et al., 2007). In addition, the 
human neutrophil peptide-1 (HNP-1, ACY-
CRIPACIAGERRYGTCIYQGALWAFCC), 
represents an intrinsic AMP found in the in-
nate immune system that plays a fundamental 
role in the defense against pathogens. The full 
mechanism of action of this peptide against 
cancer cells has not yet been established, but 
the activity has already been confirmed for 
different cancer cell lines, with very low cy-
totoxicity against healthy cells (McKeown et 
al., 2006; Gaspar et al., 2015). Furthermore, 
in terms of their structure, ACPs are mainly 
categorized as adopting either an α-helix (i.e 
cecropin, magainin, melittin, and buforin II) 
or β-sheet (i.e defensins (HNP-1, HNP-2 and 
HNP-3), lactoferricin B and tachyplesin) con-
formation due to their inability of fold into a 
well-defined structure in solution (Hoskin and 
Ramamoorthy, 2008). 

In the more recent years, a lot of focus has 
been placed on research into ACPs with the 
increase in AMP databases. One such data-
base, the antimicrobial peptide database 
(APD3) (Wang et al., 2016) (Available at 
http://aps.unmc.edu/AP/main.php) recorded 
as of May 10, 2018, a total of 2,981 AMPs, 
out of which, 215 have been classified as 
ACPs from various sources (animals, plants, 
bacteria, fungi and synthetic) (Figure 2). It 
should however, be noted that the different 
categories of the peptides (i.e. antibacterial, 
antiviral, antiparasitic, anticancer etc.) will 
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contain peptides that overlap due to some ex-
hibiting dual properties. In addition, upon fur-
ther analysis of the peptide length determin-
ing anticancer activity, it was observed that 
(Figure 3), out of the 214 ACPs in the data-
base (1 peptide “AP02769” contained a non-
canonical amino acid and was excluded from 
the analysis) 73 (34.11 %) and 60 (28.04 %) 
were 21-30 and 11-20 amino acids in length, 
respectively. Furthermore, peptides of length 
between 21-30 amino acids exhibiting anti-
bacterial, antifungal, antiparasitic and antivi-
ral activities were observed at 746 (29.83 %), 
358 (33.58 %), 35 (33.98 %) and 58 
(32.22 %), respectively. Therefore, the most 
optimal peptide length for AMPs, especially 
for ACPs is 21-30 and hence, it is of great 
value to optimize the peptide length. Moreo-
ver, upon comparison of the most frequently 
observed amino acid residues constituting 
each category of AMPs (Figure 4), it can be 
seen that for ACP functioning, G (Gly at 
10.88 %), K (Lys at 10.25 %) and L (Leu at 
11.23 %) are the most predominant. Keeping 
with this tread, the most frequently observed 
amino acid for all categories of AMPs was 
Gly which was found at 10.98 %, 10.88 %, 
10.79 %, 10.77 % and 11.82 % for ABPs, 
ACPs, AFPs, APPs and AVPs, respectively. 
Lysine was also abundantly found in most 
AMP categories, as indicated in Figure 4, as 
it is a positively charged residue which could 
provide improvement in the cell and tissue 
penetrating properties of peptides (Li and 
Cho, 2012). In addition, the hydrophobic res-
idue Leucine was also predominant in all 
AMPs (10.88 %, 11.28 %, 10.66 %, 10.13 % 
and 8.11 % for ABPs, ACPs, AFPs, APPs and 
AVPs, respectively) which infers its im-
portance in the structure and function of pro-
teins (Jayaraj et al., 2009) especially since 
therapeutic peptides usually contain around 
50 % hydrophobic residues (Mansour et al., 
2014). Furthermore, the anticancer activity of 
human AMPs have only been evaluated for 
six peptide classes (Wang et al., 2016) such as 
HNP-1, HNP-2, HNP-3, hBD-1, LL-37, and 
granulysin whose structures are shown in Fig-
ure 5. 

 
Figure 2: Bar plot of the number of antibacterial 
peptides (ABP), anticancer peptides (ACP), anti-
fungal peptides (AFP), antiparasitic peptides 
(APP) and antiviral peptides (AVP). Data is col-
lected from the antimicrobial peptide database 
(APD3) (Wang et al., 2016). 
 
  

Figure 3: Bar plot showing the peptide length dis-
tribution in percentage for antibacterial peptides 
(ABP), anticancer peptides (ACP), antifungal pep-
tides (AFP), antiparasitic peptides (APP) and an-
tiviral peptides (AVP) collected from the Antimi-
crobial Peptide Database (APD3) (Wang et al., 
2016). 
 
 

 
Figure 4: Heat map showing the amino acid com-
positions in percentage for antibacterial peptides 
(ABP), anticancer peptides (ACP), antifungal pep-
tides (AFP), antiparasitic peptides (APP) and an-
tiviral peptides (AVP). Data was collected from the 
Antimicrobial Peptide Database (APD3) (Wang et 
al., 2016). 
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Figure 5: Structures of human-derived anticancer peptides 

 
 

From thousands of available AMPs and 
many more that can be synthetically created, 
only a few have managed to reach clinical tri-
als. Presently, only ten therapeutic peptides to 
treat various tumor types are currently being 
evaluated in various phases of preclinical and 
clinical trials (Felício et al., 2017). This may 
be due to challenging developmental pro-
cesses for turning these peptides into potent 
pharmaceutical drugs (e.g. cost of synthesis, 
peptide size, charge, and solubility) (Tørfoss 
et al., 2012). However, with the increase in 
ACP research, more peptides may reach clin-
ical trials in the future. With the help of syn-
thetic approaches, peptide sequences could be 
altered so as to enhance their anticancer prop-
erties. But, the effect of these structural mod-
ifications on the physicochemical properties 
will need to be elucidated. Recently, these 
types of studies have increasingly made use of 
computational approaches (Prada-Gracia et 
al., 2016; Maccari et al., 2015; Kliger, 2010; 
Tyagi et al., 2013; Simeon et al., 2017). In ad-
dition, several databases exist which have 
pooled the data of existing sequences that per-
tain to bioactive or therapeutic peptides. 

Some of the selected databases are described 
in Table 1, where, out of all of the individual 
databases, only one named CancerPPD 
(Tyagi et al., 2015) is available for ACPs. 
Five of the databases, are the most compre-
hensive databases for AMPs that have been 
combined from various organisms. In addi-
tion, it is noteworthy that only one database, 
THPdb (Usmani et al., 2017) exists whereby 
data from FDA-approved peptides and pro-
teins are available. Besides the databases 
mentioned in Table 1, there is another data-
base, TumorHoPe (Kapoor et al., 2012), a da-
tabase that provides information regarding 
experimentally characterized tumor target-
ing/homing peptides. These peptides recog-
nize tumor tissues and tumor-associated mi-
cro-environments, including tumor metasta-
sis. Thus, they can be used to deliver drugs 
selectively in tumors. In addition, a database 
catering to cell-penetrating peptides, CPPsite 
(Gautam et al., 2012) that could also be ad-
vantageous for recognizing tumors as they ex-
hibit similar properties such as short length 
(10-30 amino acids), are cationic or amphi-
pathic (containing Arg and Lys residues), and  

 

Human neutrophil peptide 1
(PDB ID: 3GNY)

Human neutrophil peptide 2
(PDB ID: 1ZMH)

Human neutrophil peptide 3
(PDB ID: 1DFN)

Human beta-defensin-1
(PDB ID: 1IJU)

Human cathelicidin LL-37
(PDB ID: 5XNG)

Granulysin
(PDB ID: 1L9L)
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Table 1: List of selected major databases available for bioactive and therapeutic peptides. 

Dataset Description No. of 
entries 

URL Reference 

APD3 Database of natural AMPs 
with defined sequence and 
activity 

2,981 http://aps.unmc.edu/AP/  Wang et al., 
2016  

BIOPEP Database of biologically active 
peptide sequences 

3,681 http://www.uwm.edu.pl/bio-
chemia/index.php/en/biopep  

Minkiewicz et 
al., 2008  

CAMP Database of sequences, 
structures and family-specific 
signatures of prokaryotic and 
eukaryotic AMPs 

10,247  http://www.camp.bic-
nirrh.res.in/  

Waghu et al., 
2016 

CancerPPD Database of experimentally 
verified anticancer peptides 
(ACPs) and proteins 

3,491 http://crdd.osdd.net/raghava/ca
ncerppd/  

Tyagi et al., 
2015  

DRAMP Database created with the ob-
jective of providing a useful 
resource for sequence- and 
structure-activity studies on 
AMPs 

17,349 http://dramp.cpu-bioinfor.org  Fan et al., 2016  

LAMP Tool to aid the discovery and 
design of AMPs as new anti-
microbial agents 

5,547 http://biotechlab.fu-
dan.edu.cn/database/lamp  

Zhao et al., 2013  

PeptideDB Database of naturally occur-
ring signalling peptides such 
as cytokines, growth factors, 
AMPs, peptide hormones etc. 

20,027 http://www.peptides.be/  Liu et al., 2008  

SATPdb Database of structurally anno-
tated therapeutic peptides 
with unique, experimentally 
validated sequences 

19,192 http://crdd.osdd.net/raghava/sa
tpdb/  

Singh et al., 
2016  

THPdb Database of FDA approved 
therapeutic peptides and pro-
teins 

852 http://crdd.osdd.net/raghava/th
pdb/index.html  

Usmani et al., 
2017  

 

high lipophilicity. More recently, a database 
dedicated to compiling structural information 
of bioactive peptides named StraPep (Wang et 
al., 2018), which currently displays structures 
for 3,791 peptides as well as provides detailed 
information for each one (i.e. experimental 
structure, secondary structure, post-transla-
tional modification, etc.). 
 

MACHINE LEARNING 

Machine learning is a natural outgrowth 
of the integration of computer science, math-

ematics and statistics that allows software ap-
plication to become accurate in prediction 
without prior known information (Nasrabadi 
2007). The basic application of machine 
learning is to build algorithms that can formu-
late a data (a matrix 𝑋"# , where each row 
x=(𝑥"%, 𝑥"&, 𝑥"',..., 𝑥"#) is a sample composed 
of j features) with its proper form and use a 
prediction model to elucidate an output. 

The application of machine learning for 
correlating the relationship that exists be-
tween structures of biological and chemical 
entities (i.e. peptides and proteins for the for-
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mer while small molecules for the latter) with 
their observed or experimentally measured bi-
ological activity gives rise to an exciting field 
of research known as quantitative structure-
activity relationship (QSAR). The formula-
tion of a QSAR model entails the generation 
of quantitative and/or qualitative description 
of the biological or chemical entities (i.e. 
known as descriptors) and their subsequent 
correlation with the biological activity (e.g. 
IC50, EC50, % activity, etc.) through the use of 
machine learning algorithms.  

Details on the best practices for the devel-
opment of QSAR models is beyond the scope 
of this review and readers are directed to pre-
vious literature (Nantasenamat and Prachaya-
sittikul, 2015; Tropsha, 2010; Shoombuatong 
et al., 2017a, b). Briefly, characteristics of a 
robust QSAR model is best summarized by 
the OECD principles (OECD, 2014) as out-
lined in Table 2. In a nutshell, it can be clear 
that a robust QSAR model should be properly 
prepared and curated, afford good perfor-
mance as well as being interpretable so as to 
facilitate the utilization of the model for gain-
ing insights into the underlying biological ac-
tivity. 

 
MODEL SET-UP FOR PREDICTING 

ANTICANCER PEPTIDES 
Based on the prior knowledge of peptide 

sequence analysis, anticancer peptide predic-
tion should be tackled in two associated ways:  
discriminating ACPs from non-ACPs and 
then predicting the anticancer activity of such 
ACPs. Due to the limitation of the experi-
mental approach (e.g. slow and laborious pro-
cess, expensive, difficulty in peptide purifica-
tion etc.) for identifying the anticancer activ-
ity, computational tools for discriminating 
ACPs from non-ACPs is an essential way for 
saving the time-consuming and expensive 
cost.  

Typically, the computational tool con-
struction based on machine learning algo-
rithm consists of four main elements, e.g. data 
collection, feature representation, model con-

struction and model evaluation (Shoombu-
atong et al., 2012, 2015a, b, 2016, 2017a, b; 
Win et al., 2017; Pratiwi et al., 2017; Nanta-
senamat et al., 2015). In the point of view of 
machine learning, the use of reliable dataset 
plays a crucial role to obtain an efficient and 
generalized model. Previously, there have 
been many datasets that were used for devel-
oping various prediction models as shown in 
Table 3. Meanwhile, the remaining important 
elements are listed in Tables 4 and 5. In the 
following section, a comprehensive summary 
of previous works in this field are highlighted. 

 
MACHINE LEARNING MODELS 

FOR THE PREDICTION OF ANTI-
CANCER PEPTIDE 

Previously, a variety of computational ap-
proaches,   including AntiCP   (Tyagi et al., 
2013), Hajisharifi et al.,’s method (2014), 
ACPP   (Vijayakumar and Ptv, 2015),   iACP 
(Chen et al., 2016), Feng et al.,’s method (Li 
and Wang, 2016), iACP-GAEnsC (Akbar et 
al., 2017), Fazlullah et al.,’s method (Khan et 
al., 2017) and SAP (Xu et al., 2018), have 
been developed, which will be discussed in 
the following section. Almost all of the exist-
ing methods were developed by using support 
vector machine (SVM) cooperating with var-
ious types of peptide features, except for 
iACP-GAEnsC (Akbar et al., 2017) that was 
based on the ensemble approach. The over-
view of their datasets, type of features, ma-
chine learning algorithms and validation 
methods are shown in Table 5. Meanwhile, 
Table 6 lists the performance comparison 
among the existing methods as evaluated by 
5-fold CV, 10-fold CV and jackknife test. 
Tyagi et al. (2013) first addressed this prob-
lem by using SVM-based predictor named 
AntiCP, in which TY1, TY2 and TY3 datasets  
were implemented with AAC, DPC and bi-
nary profile. The research however, does not 
specifically state the type of kernel function 
used.  SVM model with  ACC/DPC yielded 
prediction accuracies of 85.52 %/ 85.29 % 
and 75.70 %/75.20 % respectively, evaluated  
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Table 2: Summary of the OECD principles for the development of robust QSAR models. 

# OECD principle Description 

1 Defined endpoint To ensure that the dataset is of high quality; particularly that 
all endpoint values are free from error 

2 Unambiguous algorithm To ensure the transparency and reproducibility of the QSAR 
model 

3 Defined domain of applicabil-
ity 

To define the boundaries for which the QSAR model is capa-
ble of making predictions for query compounds such that they 
are not too structurally different than those used to train the 
model 

4 Appropriate measures of 
goodness-of-fit, robustness 
and predictivity 

To rigorously evaluate the performance of the QSAR model 

5 Mechanistic interpretation To ensure that the model can be mechanistically interpreted 
 
Table 3: Summary of all datasets used in this research for evaluating anticancer peptide prediction. 

Dataset Sequence  
identity (%)a 

No. of 
ACP 

No. of  
Non-ACP 

Total  
number 

Reference 

TY1 100 225 2,250 2,475 Tyagi et al., 2013 
TY2 100 225 1,372 1,597 Tyagi et al., 2013 
TY3 100 225 225 450 Tyagi et al., 2013 
TY_IND 100 50 50 100 Tyagi et al., 2013 
ZOH 90 138 206 344 Hajisharifi et al., 2014 
SA_TRAIN 100 217 3,979 4,196 Vijayakumar and Ptv, 2015 
SA_IND 100 40 40 80 Vijayakumar and Ptv, 2015 
SA_RAND 100 - 2,000 2,000 Vijayakumar and Ptv, 2015 
WC_IND 100 150 150 300 Chen et al., 2016 
LEE 100 422 422 844 Manavalan et al., 2017 

a Peptides having more than 90 % or 100 % pairwise sequence identity were removed from the dataset. 
 

Table 4: Summary of all peptide features and their feature groups in this research. 

Feature name CS ATC PCP PseCOM SM 

Amino acid composition (AAC) ✓     
Atomic composition (ATC)   ✓   
Auto covariance of the average chemical shift 
(acACS) 

 ✓    

Amphiphilic pseudo amino acid composition  
(Am-PseAAC) 

   ✓  

Binary profile (BP) ✓     
Dipeptide composition (DPC) ✓     
G-Gap dipeptide composition (g-gap DPC) ✓     
Local alignment kernel     ✓ 
Physicochemical properties (PCP)   ✓   
Pseudo amino acid composition (PseACC)    ✓  
Pseudo G-Gap dipeptide composition  
(Pse-g-gap DPC) 

   ✓  

Protein relatedness measure (PRM)   ✓   
Reduce amino acid composition (RACC)   ✓   
Split amino acid composition (SAAC) ✓     

CS: Composition, ATC: Autocorrelation, PCP: Physicochemical properties, PseCOM: Pseudo Composition,  
SM: Similarity measure 
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Table 5: Summary of existing methods for predicting anticancer peptides. 

Method Classifiera Sequence  
feature (No.)b 

Testing  
methodc 

Web-
server 

Reference 

AntiCP SVM AAC, DPC, BP (200) 10-fold CV and 
independent test 

✓ Tyagi et 
al., 2013 

Hajishar-
ifi et al.,’s 
method 

SVM PseACC, LAK 
(>200) 

5-fold CV and in-
dependent test 

 Hajisharifi 
et al., 2014 

ACPP SVM, AdaBoost PRM (60) 10-fold CV and 
independent test 

✓d Vijaya-
kumar and 
Ptv, 2015 

iACP SVM g-gap DPC (400) 5-fold CV, Jack-
knife and inde-
pendent test 

✓ Chen et 
al., 2016 

Li and 
Wang’s 
method 

SVM AAC, RACC, 
acACS (80) 

5-fold CV, Jack-
knife 

 Li and 
Wang, 
2016 

Khan et 
al.,’s 
method 

SVM, k-NN SAAC, DPC, PseAAC 
(552) 

Jackknife  Khan et al., 
2017 

iACP-
GAEnsC 

Ensemble, SVM, 
k-NN, PNN, RF, 
GRNN 

Pse-g-gap DPC, Am-Pse-
AAC, RACC (588) 

Jackknife  Akbar et 
al., 2017 

MLACP SVM, RF AAC, ATC, DPC, PCP 
(436) 

10-fold CV ✓ Manavalan 
et al., 2017 

SAP SVM, RF, 
LibD3C 

g-gap DPC (400) 5-fold CV  Xu et al., 
2018 

a k-NN: k-nearest Neighbor, GRNN: generalized neural network, LibD3C: hybrid model of ensemble pruning, PNN: probabilistic 
neural network, RF: random forest, SVM: support vector machine. 
b AAC: amino acid composition, ATC: atomic composition , acACS: auto covariance of the average chemical shift, Am-PseAAC: 
amphiphilic pseudo amino acid composition, BP: binary profile, DPC: dipeptide composition, g-gap DPC: G-Gap dipeptide  
composition, LAK: local alignment kernel, PCP: Physicochemical properties, PseACC: Pseudo amino acid composition,  
Pse-g-gap DPC: Pseudo G-Gap dipeptide composition, PRM: protein relatedness measure, RACC: reduce amino acid  
composition, SAAC: split amino acid composition. 
c 5-fold CV: 5-fold cross-validation, 10-fold CV: 10-fold cross-validation 

d The webserver version is currently unavailable. 
 
Table 6: Performance benchmark comparing various computational methods evaluated by 5- and 10-
fold cross-validation and jackknife test. 

Method Testing 
method 

Benchmarking 
dataset  

Accuracy (%) MCC Reference 

AntiCP 10-fold CV TY3 91.44 0.83 Tyagi et al., 2013 
Hajishaifi et 
al.,’s method 

5-fold CV ZOH 89.70 0.78 Hajisharifi et al., 
2014 

ACPP 10-fold CV SA_TRAIN 97.70 0.92 Vijayakumar and Ptv 
2015 

iACP 5-fold CV ZOH 94.77 0.89 Chen et al., 2016 
Li and Wang’s 
method 

Jackknife ZOH 93.61 0.88 Li and Wang 2016 

Khan et al.,’s 
method 

Jackknife ZOH 93.31 0.86 Khan et al., 2017 

iACP-
GAEnsC 

Jackknife ZOH 96.45 0.91 Akbar et al., 2017 

MLACP 10-fold CV LEE 96.40 0.89 Manavalan et al., 
2017 

SAP 5-fold CV ZOH 91.86 0.83 Xu et al., 2018 
5-fold CV: 5-fold cross-validation, 10-fold CV: 10-fold cross-validation 
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by a 10-fold CV method on TY1 and TY2 da-
tasets. These results revealed that the im-
portance of ACC feature for enhancing ACP 
prediction was not quite different from DPC 
feature.  But, when binary (NT10) based mod-
els were applied, where NT10 was the first 10 
residues and each amino acid was represented 
by (20*10)-dimensional vector, the accuracy 
improved to 91.44 %. Finally, SVM based on 
the NT10 models performed well with 89 % 
accuracy and 0.78 MCC on TY_IND dataset. 
Finally, a web-server (Available at 
http://crdd.osdd.net/raghava/anticp/) was de-
veloped to help experimental scientists in pre-
dicting minimum mutations required for im-
proving anticancer potency, virtual screening 
of peptides for discovering novel anticancer 
peptides and scanning natural proteins for 
identification of ACPs. 

Hajisharifi et al., (2014) took advantage of 
PseAAC feature and local alignment kernels 
for improving the prediction performance of 
the model. In the study, the benchmark ZOH 
dataset was firstly created by collecting data 
from the antimicrobial peptide database 
(APD2) (Wang et al., 2009, available at 
http://aps.unmc.edu/AP/.) The ZOH dataset 
consisted of 192 ACPs and 215 non-ACPs 
and then, to prevent an overestimation of pre-
diction results due to highly similar se-
quences, peptides with more than 90 % simi-
larity were removed from the initial ZOH da-
taset using CD-HIT (Li and Godzik, 2006). 
Finally, a total of 138 ACPs and 206 non-
ACPs were gained as summarized in Table 2. 
SVM model conjunction with PseACC fea-
ture showed the values of accuracy, sensitiv-
ity, specificity and MCC of 83.82 %, 
81.84 %, 85.36 % and 0.66, respectively, 
evaluated by a 5-fold CV procedure. Mean-
while, using a local alignment kernel yielded 
better prediction results than PseACC feature 
with improvements of > 6 % and 10 % on 
both Ac and MCC, respectively. 

Only one year later, Vijayakumar and Ptv 
(2015) utilized two powerful SVM and Ada-
Boost models cooperating with the protein re-
latedness measure (PRM) parameters called 

ACPP. The PRM feature represents each pep-
tide with the degree distribution of amino ac-
ids deviating from a theoretical protein/pep-
tide. To build a prediction model, SVM model 
with radial basis function (RBF) kernel and 
the tuning cost and gamma parameters of 2 
and 0.0078, respectively, were used, while 
AdaBoost model based on the linear combi-
nation of simple weak classifiers with the tun-
ing number of 10 iterations was applied. In 
this study, ACPP was evaluated with a 10-
fold cross-validation method and independent 
test. SVM and AdaBoost were first carried out 
on the imbalanced dataset containing 217 
ACPs and 3,979 non-ACPs as summarized in 
Table 2. The prediction results showed that 
SVM and AdaBoost yielded MCC values as 
low as 0.59 and 0.57, while, the balanced da-
taset (217 peptide sequences on both ACPs 
and non-ACPs), yielded increased accuracies 
for SVM and AdaBoost of 0.92 and 0.88, re-
spectively. Based on these results, the authors 
stated that the PRM feature adopted to clas-
sify ACPs from non-ACPs was effective. Alt-
hough, in this study, a web-server was estab-
lished at http://acpp.bicpu.edu.in/predict.php, 
however, it is currently unavailable. 

In 2016, there were two different research 
groups that made efforts to develop ACP pre-
dictors, i.e. iACP (Chen et al., 2016) and Feng 
et al.,’s method (Li and Wang, 2016). Chen et 
al. (2016) proposed an approach to take ad-
vantage of SVM model in conjunction with g-
gap dipeptide compositions (g-gap DPC), 
where g = 0, 1, 2, 3 or 4 and g =0 is DPC, as 
well as working together with ANOVA (anal-
ysis of variance). Herein, SVM model with 
radial basis function (RBF) kernel and their 
optimal parameter of cost = 2 and gamma = 
0.125 were used. The ANOVA approach via 
the incremental feature selection (IFS) was 
used for selecting informative features among 
g-gap DPCs. The process of determining the 
optimal number of features was conducted ac-
cording to the following steps: (1) the feature 
with the highest F-score was selected as the 
input of SVM and the prediction performance 
assessed  with  5-fold  CV  was  calculated  to 
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evaluate the performance of this feature; (2) 
the feature with the second highest F-score 
was then combined with the first feature to 
form a new feature subset and  the prediction 
performance with the criteria was still used to 
estimate the performance of the new feature 
subset; (3) this process was done when the 
prediction performance of 400 features were 
calculated. The highest accuracy of 94.77 % 
can be achieved by using g=1 and the 126 top-
ranked informative features. Li and Wang 
(2016) attempted to improve the prediction 
performance by using SVM model with hy-
brid composition, i.e. AAC, auto covariance 
of the average chemical shift (acACS) and re-
duced amino acid composition (RAAC). The 
parameters of RBF kernel used were tuned us-
ing the grid search method. Initial prediction 
results for their model using AAC on the ZOH 
dataset showed the value of accuracy and 
MCC of 91.86 % and 0.83, respectively. The 
second and third highest accuracies were ob-
tained from using RACC (84.01 %) and 
asACS (82.56 %), respectively. Meanwhile, 
the combination features of AAC, RAAC and 
acACS performed best with 93.61 % accu-
racy and 0.87 MCC. The authors of this paper 
suggested that these combination features 
were helpful to the prediction of ACPs. 

In 2017, three different ACP predictors 
were developed with various types of ma-
chine learning algorithms and peptide fea-
tures, i.e. Khan et al.,’s method (2017), iACP-
GAEnsC (Akbar et al., 2017) and MLACP 
(Manavalan et al., 2017). Khan et al. (2017) 
utilized SVM and k-nearest Neighbor (k-NN) 
models with a variety of peptide features, i.e. 
split amino acid composition (SAAC), DPC 
and PseAAC, to find the suitable feature for 
discriminating ACPs from non-ACPs. The to-
tal number of feature spaces of SAAC, DPC 
and PseAAC were 400, 62 and 60, respec-
tively. To build prediction models, authors 
used RBF kernel to create SVM model, while 
euclidian distance was used to compute the 
distance among the peptide sequences. The 
optimum parameters of these two models 
were obtained during the training phase. The 

performance comparison evaluated by jack-
knife test demonstrated that SVM and k-NN 
models using SAAC outperformed the other 
two features with an accuracy of 93.31 % and 
90.17 %. Akbar et al. (2017) examined the 
ability of a variety of machine learning algo-
rithms, i.e. SVM, random forest (RF), k-near-
est Neighbor (k-NN), generalized neural net-
work (GRNN), and probabilistic neural net-
work (PNN). In this study, each peptide was 
represented by three different feature extrac-
tion schemes using RAAP, Pse-g-Gap dipep-
tide composition (Pse-g-gap DPC) and am-
phiphilic PseAAC (Am-PseACC). Finally, 
the evolution genetic algorithm was used to 
measure the diversity and optimum outcome 
or prediction results of the different methods 
called iACP-GAEnsC. Initial prediction re-
sults showed that using Am-PseACC with 
jackknife test achieved accuracies of 93.60 %, 
90.41 %, 91.28 %, 86.33 % and 93.89 % for 
SVM, k-NN, PNN, RF, GRNN and GAEnsC, 
respectively. Their best accuracy of 94.45 % 
was achieved by using an ensemble approach 
with the merging of SVM, k-NN, PNN, RF 
and GRNN associated with a hybrid feature of 
RAAP, Pse-g-gap DPC and Am-PseACC. 
Manavalan et al. (2017) developed machine 
learning-based methods (SVM and RF), 
named SVMACP, RFACP and MLACP us-
ing a combination of features, including ACC, 
DPC, PCP and ATC. The number of dimen-
sions for ACC, DPC, PCP and ATC features 
were 20, 400, 11, 5, respectively. For each 
model, authors optimized the RF (ntree and 
mtry) and SVM (cost and gamma) parameters 
by using 10-fold CV on the TY3 dataset. In 
the case of using a single feature, RFACP and 
SVMACP yielded accuracies ranging from 
81.4 %-86.8 % and 75.9 %-85.8 %, respec-
tively. The best accuracy and MCC of 87.2 
and 0.70, respectively, was achieved by using 
RF model with the combination feature of 
ACC, DPC, PCP and ATC. 

Recently, Xu et al. (2018) developed the 
MRMD method to select important features 
from g-gap DPC. The selected, informative 
feature was used as an input feature to train the
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the SVM model called SAP. The paper does 
not specifically state the type of kernel func-
tion used. For a 5-fold CV, SAP using all 400 
features yielded 91.86 % accuracy and 0.83 
MCC, while using selected features offered a 
90.70 % accuracy and 0.81 MCC. Further-
more, SAP was also compared with RF and 
LibD3D, where LibD3D is a selective ensem-
ble model. The overall accuracy comparison 
showed that SAP (91.78 %) was quite compa-
rable with RF (91.88 %) and LibD3D 
(89.24 %) models.  

The aforementioned articles showed 
promising results in the use of various types 
of machine learning algorithms and peptides 
features as summarized in Tables 5 and 6. As 
seen in Table 3, the ZOH is known as the valid 
benchmark dataset used for developing vari-
ous prediction models (Hajisharifi et al., 
2014; Chen et al., 2016; Xu et al., 2018; Khan 
et al., 2017; Akbar et al., 2017). Amongst 
these methods, iACP (Chen et al., 2016) and 
iACP-GAEnsC (Akbar et al., 2017) showed 
their best predictive accuracies of 94.77 % 
and 96.45 % as evaluated by 5-fold CV and 
jackknife test procedures, respectively. In ad-
dition, iACP revealed its efficiency by carry-
ing out an independent WC_IND data achiev-
ing an accuracy and MCC of 92.67 % and 
0.85, respectively. Considering that the inde-
pendent test is the most rigorous cross-valida-
tion method, it might be stated that iACP 
(Chen et al., 2016) was superior to other pre-
diction methods as demonstrated in Table 5. 
Amongst the existing methods, some of them 
(Tyagi et al., 2013; Chen et al., 2016; Ma-
navalan et al., 2017) determined the important 
amino acids and dipeptide that were enriched 
in anticancer peptides using componential 
analysis (Manavalan et al., 2017; Tyagi et al., 
2013) and F-score (Chen et al., 2016). 

 
BIOLOGICAL INSIGHTS FROM  

PREDICTIVE MODELS  
Feature importance analysis from existing 

models (Tyagi et al., 2013; Chen et al., 2016; 
Manavalan et al., 2017 indicated that in gen-
eral anticancer peptides are abundant in Cys, 

Glu, Phe, Gly, lle, Lys and Phe when com-
pared to non-anticancer peptides (Chen et al., 
2016). Particularly, Tyagi et al. (2013) re-
ported that Gly, Leu, Ala and Phe were pref-
erential residues at the N-terminus of anti-
cancer peptides while Val, Cys, Leu and Lys 
were likely to be found at the C-terminus. 
Furthermore, Manavalan et al. (2017) re-
vealed that the 10 top-ranking features in an-
ticancer peptides were comprised of dipep-
tides rich in positively charged and aromatic 
residues (e.g. KK, AK, KL, AL, KA, KW, 
LA, LK, FA and LF). Moreover, it should also 
be noted that desirable trait for anticancer 
peptides is their cell penetrating ability such 
that they can specifically neutralize their tar-
get while maintaining low toxicity. 
 

LIMITATIONS OF CURRENT  
MACHINE LEARNING MODELS  

The use of machine learning algorithm is 
one of the important factors in the steady 
growth of the field of anticancer drug discov-
ery and development. Most of the reported an-
ticancer peptide prediction methods were 
mainly developed in order to enhance the pre-
diction accuracy by taking advantage of the 
complexity of prediction methods and the 
number of feature types. Overall, most re-
search articles showed encouraging results 
with having satisfied accuracies of more than 
90 %. Nevertheless, there is still room for de-
velopment to improve the existing methods as 
useful and interpretable models for facilitat-
ing experimental scientists and related re-
searchers as demonstrated by a series of re-
cent publications (Shoombuatong et al., 2012, 
2015a, b, 2016, 2017a, b; Win et al., 2017; 
Pratiwi et al., 2017; Nantasenamat et al., 
2015) and summarized in comprehensive re-
views (Nantasenamat et al., 2015; Shoombu-
atong et al., 2017a, b). 

In addition, the most commonly used 
benchmark dataset ZOH, (Hajisharifi et al., 
2014) consisted of 138 ACPs and 206 non-
ACPs in which only ACPs were derived from 
the experimental verification method. It could 
be stated that existing  methods developed by 
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ZOH dataset might not be completely suited 
to accurately filter experimentally verified 
non-ACPs from ACPs. Furthermore, peptide 
features were intrinsically heterogeneous, 
noisy and multi-dimensional, but only a few 
existing methods (Chen et al., 2016; Xu et al., 
2018) took advantage of feature selection 
techniques to qualify and rank the importance 
and the contributions of the features for the 
model performance. Thus, these method has 
utilized only partial information of the biolog-
ical activity of ACP. It could be stated that the 
role of different types of peptide features con-
tributing to the biological activity of anti-
cancer peptide are still poorly understood. 
Additionally, a variety of methods were used 
to evaluate the prediction performance of 
ACP predictions as listed in Table 5, includ-
ing N-fold cross-validation, where N is 5 or 
10, jackknife test and independent test. The 
independent test is an effective way to test the 
performance of a model in real-world appli-
cations and verify the generalization of a 
model, but only few existing methods (Tyagi 
et al., 2013; Vijayakumar and Ptv, 2015; Chen 
et al., 2016; Li and Wang, 2016) were as-
sessed with this method. Finally, according to 
the fifth principle of OEC which states that, it 
is necessary and significant of an interpretable 
QSAR model to provide important factors 
that can enhance the biological activity of 
peptides or compounds. Amongst the existing 
methods, some of them (Tyagi et al., 2013; 
Chen et al., 2016; Manavalan et al., 2017) 
provided the results of feature importance 
analysis by using componential analysis (Ma-
navalan et al., 2017; Tyagi et al., 2013) and F-
score (Chen et al., 2016). However, they did 
not clearly mention which features contrib-
uted most to prediction performance. Moreo-
ver, the SVM model was not straight-forward 
enough to interpret the underlying biological 
implications of anticancer peptides. 

 
CONCLUSION 

The success story of therapeutic peptides 
is starting to gain moment with more than 60 
approved by the FDA and more than 150 pep-
tides have reached pre-clinical and clinical 

stages. In addition, a literature review have in-
dicated that there is a large volume of on-go-
ing studies being carried out in the field. In 
spite of the large sum of papers on the utiliza-
tion of machine learning approaches for the 
development of QSAR models of bioactive 
and therapeutic peptides, however there are 
few review articles that examine the field in a 
systematic manner. It is the intent of this re-
view article to fill this gap by providing read-
ers with the current advancements pertaining 
to the current state-of-the-art on the prediction 
of anticancer peptides via the use of machine 
learning approaches. 

A survey of existing QSAR models 
against anticancer peptides suggested that al-
most all provided reasonably high prediction 
accuracies and in spite of this, there are limit-
ing factors that may hinder their full potential 
for application as follows:  

(i)  Absence of experimentally verified 
non-anticancer peptides. 

(ii) Inclusion of trivial and non-informa-
tive features during the model build-
ing process. 

(iii) Lack of comprehensive evaluation 
method and failure to make use of in-
terpretable learning methods. 

In efforts to augment the robustness of the 
predictive model, herein are recommenda-
tions: 

(i)  Increase the size of the peptide da-
taset by combining all data sources 
together as to capture as much as 
possible of the pattern of dataset for 
alleviating uncertainties in the pre-
diction system. 

(ii) Familiarize oneself with the back-
ground and details of the descriptors 
being used such that the resulting 
models could be interpreted in a 
meaningful manner as to gain bio-
logical insights for guiding further 
experiments. 

(iii) Use interpretable learning algo-
rithms as to allow the interpretation 
of important features responsible for 
the biological activity. 
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(iv) Ensure that the model is externally 
validated on an independent test set 
as well as defining the applicability 
domain of the model as to verify the 
ability of the model for extrapolation 
to future unknown data.  

(v) Ensure the reproducibility of con-
structed models such that interested 
users could extend the model further. 

(vi) If possible, constructed models 
should be made publicly available in 
the form of webservers so as to facil-
itate easy access to the model’s pre-
diction capability. 

 
Conflict of interests 

The authors declare that no competing in-
terests exist. 

 
Acknowledgements 

This work is supported by the Office of 
Higher Education Commission and the Thai-
land Research Fund (No. MRG6180226); the 
New Researcher Grant (A31/2561) from Ma-
hidol University; and the Center of Excel-
lence on Medical Biotechnology (CEMB), 
S&T Postgraduate Education and Research 
Development Office (PERDO), Office of 
Higher Education Commission (OHEC), 
Thailand. Partial support from the annual 
budget grant (B.E. 2557-2559) of Mahidol 
University is also acknowledged. 
 

REFERENCES 

Akbar S, Hayat M, Iqbal M, Jan MA. iACP-GAEnsC: 
Evolutionary genetic algorithm based ensemble classi-
fication of anticancer peptides by utilizing hybrid fea-
ture space. Artif Intell Med. 2017;79:62–70. 

Alam S, Khan F. QSAR and docking studies on xan-
thone derivatives for anticancer activity targeting DNA 
topoisomerase IIα. Drug Des Devel Ther. 2014;8:183–
95. 

Al-Benna S, Shai Y, Jacobsen F, Steinstraesser L. On-
colytic activities of host defense peptides. Int J Mol 
Sci. 2011;12:8027–51. 

Arnold M, Karim-Kos HE, Coebergh JW, Byrnes G, 
Antilla A, Ferlay J, et al. Recent trends in incidence of 
five common cancers in 26 European countries since 
1988: Analysis of the European Cancer Observatory. 
Eur J Cancer. 2015;51:1164–87. 

Berge G, Eliassen LT, Camilio KA, Bartnes K, Svein-
bjørnsson B, Rekdal O. Therapeutic vaccination 
against a murine lymphoma by intratumoral injection 
of a cationic anticancer peptide. Cancer Immunol Im-
munother. 2010;59:1285–94. 

Braunstein A, Papo N, Shai Y. In vitro activity and po-
tency of an intravenously injected antimicrobial pep-
tide and its DL amino acid analog in mice infected with 
bacteria. Antimicrob Agents Chemother. 2004;48: 
3127–9. 

Camilio KA, Berge G, Ravuri CS, Rekdal O, Svein-
bjørnsson B. Complete regression and systemic protec-
tive immune responses obtained in B16 melanomas af-
ter treatment with LTX-315. Cancer Immunol Immu-
nother. 2014;63:601–13. 

Chen W, Ding H, Feng P, Lin H, Chou K-C. iACP: a 
sequence-based tool for identifying anticancer pep-
tides. Oncotarget. 2016;7:16895–909. 

Chen Y, Xu X, Hong S, Chen J, Liu N, Underhill CB, 
et al. RGD-Tachyplesin inhibits tumor growth. Cancer 
Res. 2001;61:2434–8. 

Craik DJ, Fairlie DP, Liras S, Price D. The future of 
peptide-based drugs. Chem Biol Drug Des. 2013;81: 
136–47. 

Dennison SR, Harris F, Phoenix DA. The interactions 
of aurein 1.2 with cancer cell membranes. Biophys 
Chem. 2007;127:78–83. 

Deslouches B, Gonzalez IA, DeAlmeida D, Islam K, 
Steele C, Montelaro RC, et al. De novo-derived cati-
onic antimicrobial peptide activity in a murine model 
of Pseudomonas aeruginosa bacteraemia. J Antimicrob 
Chemother. 2007;60:669–72. 

Domalaon R, Findlay B, Ogunsina M, Arthur G, 
Schweizer F. Ultrashort cationic lipopeptides and 
lipopeptoids: Evaluation and mechanistic insights 
against epithelial cancer cells. Peptides. 2016;84:58–
67. 

Du Q-S, Huang R-B, Chou K-C. Recent advances in 
QSAR and their applications in predicting the activities 
of chemical molecules, peptides and proteins for drug 
design. Curr Protein Pept Sci. 2008;9:248–60. 

  



EXCLI Journal 2018;17:734-752 – ISSN 1611-2156 
Received: June 20, 2018, accepted: July 10, 2018, published: July 25, 2018 

 

 

749 

Fan L, Sun J, Zhou M, Zhou J, Lao X, Zheng H, et al. 
DRAMP: a comprehensive data repository of antimi-
crobial peptides. Sci Rep. 2016;6:24482. 

Felício MR, Silva ON, Gonçalves S, Santos NC, 
Franco OL. Peptides with dual antimicrobial and anti-
cancer activities. Front Chem. 2017;5:5. 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers 
C, Rebelo M, et al. Cancer incidence and mortality 
worldwide: sources, methods and major patterns in 
GLOBOCAN 2012. Int J Cancer. 2015;136:E359-86. 

Figueiredo CR, Matsuo AL, Massaoka MH, Polonelli 
L, Travassos LR. Anti-tumor activities of peptides cor-
responding to conserved complementary determining 
regions from different immunoglobulins. Peptides. 
2014;59:14–9. 

Fosgerau K, Hoffmann T. Peptide therapeutics: current 
status and future directions. Drug Discov Today. 2015; 
20:122–8. 

Garay RP, El-Gewely R, Armstrong JK, Garratty G, 
Richette P. Antibodies against polyethylene glycol in 
healthy subjects and in patients treated with PEG-con-
jugated agents. Expert Opin Drug Deliv. 2012;9:1319–
23. 

Gaspar D, Freire JM, Pacheco TR, Barata JT, Castanho 
MARB. Apoptotic human neutrophil peptide-1 anti-tu-
mor activity revealed by cellular biomechanics. Bio-
chim Biophys Acta. 2015;1853:308–16. 

Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, 
Kapoor P, et al. CPPsite: a curated database of cell pen-
etrating peptides. Database. 2012;2012: bas015. 

Giacometti A, Cirioni O, Riva A, Kamysz W, Silvestri 
C, Nadolski P, et al. In vitro activity of aurein 1.2 alone 
and in combination with antibiotics against gram-posi-
tive nosocomial cocci. Antimicrob Agents Chemother. 
2007;51:1494–6. 

Hajisharifi Z, Piryaiee M, Mohammad Beigi M, 
Behbahani M, Mohabatkar H. Predicting anticancer 
peptides with Chou’s pseudo amino acid composition 
and investigating their mutagenicity via Ames test. J 
Theor Biol. 2014;341:34–40. 

Hao X, Yan Q, Zhao J, Wang W, Huang Y, Chen Y. 
TAT modification of alpha-helical anticancer peptides 
to improve specificity and efficacy. PLoS ONE. 2015; 
10:e0138911. 

Hoskin DW, Ramamoorthy A. Studies on anticancer 
activities of antimicrobial peptides. Biochim Biophys 
Acta. 2008;1778:357–75. 

Hu C, Chen X, Zhao W, Chen Y, Huang Y. Design and 
modification of anticancer peptides. Drug Des. 2016;5: 
138. 

Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, 
Taylor D, et al. Selective cancer cell cytotoxicity of en-
antiomeric 9-mer peptides derived from beetle defen-
sins depends on negatively charged phosphatidylserine 
on the cell surface. Peptides. 2009;30:660–8. 

Jayaraj V, Suhanya R, Vijayasarathy M, Anandagopu 
P, Rajasekaran E. Role of large hydrophobic residues 
in proteins. Bioinformation. 2009;3:409–12. 

Jin G, Weinberg A. Human antimicrobial peptides and 
cancer. Semin Cell Dev Biol. 2018; In Press. DOI: 
10.1016/j.semcdb.2018.04.006. 

Kapoor P, Singh H, Gautam A, Chaudhary K, Kumar 
R, Raghava GPS. TumorHoPe: a database of tumor 
homing peptides. PLoS ONE. 2012;7:e35187. 

Karpiński TM, Adamczak A. Anticancer activity of 
bacterial proteins and peptides. Pharmaceutics. 2018; 
10(2):54. 

Kelly GJ, Kia AF-A, Hassan F, O’Grady S, Morgan 
MP, Creaven BS, et al. Polymeric prodrug combination 
to exploit the therapeutic potential of antimicrobial 
peptides against cancer cells. Org Biomol Chem. 2016; 
14:9278–86. 

Khan F, Akbar S, Basit A, Khan I, Akhlaq H. Identifi-
cation of anticancer peptides using optimal feature 
space of chou’s split amino acid composition and sup-
port vector machine. In: Proceedings of the 2017 4th 
International Conference on Biomedical and Bioinfor-
matics Engineering - ICBBE 2017;2017:91–6. 

Kliger Y. Computational approaches to therapeutic 
peptide discovery. Biopolymers. 2010;94:701–10. 

Lau JL, Dunn MK. Therapeutic peptides: Historical 
perspectives, current development trends, and future 
directions. Bioorg Med Chem. 2018;26:2700–7. 

Lee EY, Fulan BM, Wong GCL, Ferguson AL. Map-
ping membrane activity in undiscovered peptide se-
quence space using machine learning. Proc Natl Acad 
Sci USA. 2016;113:13588–93. 

Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong 
GCL. What can machine learning do for antimicrobial 
peptides, and what can antimicrobial peptides do for 
machine learning? Interface Focus. 2017;7:20160153. 

Lee EY, Wong GCL, Ferguson AL. Machine learning-
enabled discovery and design of membrane-active pep-
tides. Bioorg Med Chem. 2018;26: 2708-18. 



EXCLI Journal 2018;17:734-752 – ISSN 1611-2156 
Received: June 20, 2018, accepted: July 10, 2018, published: July 25, 2018 

 

 

750 

Li F-M, Wang X-Q. Identifying anticancer peptides by 
using improved hybrid compositions. Sci Rep. 2016;6: 
33910. 

Li H, Anuwongcharoen N, Malik AA, Prachayasittikul 
V, Wikberg JES, Nantasenamat C. Roles of ᴅ-amino 
acids on the bioactivity of host defense peptides. Int J 
Mol Sci. 2016;17(7):1023. 

Li H, Schaduangrat N, Simeon S, Nantasenamat C. 
Computational study on the origin of the cancer immu-
notherapeutic potential of B and T cell epitope pep-
tides. Mol Biosyst. 2017;13:2310–22. 

Li W, Godzik A. Cd-hit: a fast program for clustering 
and comparing large sets of protein or nucleotide se-
quences. Bioinformatics. 2006;22:1658–9. 

Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on 
the recent study of antimicrobial peptides: origins, 
functions, relative mechanisms and application. Pep-
tides. 2012;37:207–15. 

Li ZJ, Cho CH. Peptides as targeting probes against tu-
mor vasculature for diagnosis and drug delivery. J 
Transl Med. 2012;10(Suppl 1):S1. 

Liu F, Baggerman G, Schoofs L, Wets G. The con-
struction of a bioactive peptide database in Metazoa. J 
Proteome Res. 2008;7:4119–31. 

Maccari G, Di Luca M, Nifosì R. In silico design of 
antimicrobial peptides. Methods Mol Biol. 2015;1268: 
195–219. 

Makobongo MO, Gancz H, Carpenter BM, McDaniel 
DP, Merrell DS. The oligo-acyl lysyl antimicrobial 
peptide C₁₂K-2β₁₂ exhibits a dual mechanism of action 
and demonstrates strong in vivo efficacy against Heli-
cobacter pylori. Antimicrob Agents Chemother. 2012; 
56:378–90. 

Makovitzki A, Fink A, Shai Y. Suppression of human 
solid tumor growth in mice by intratumor and systemic 
inoculation of histidine-rich and pH-dependent host 
defense-like lytic peptides. Cancer Res. 2009;69: 
3458–63. 

Manavalan B, Basith S, Shin TH, Choi S, Kim MO, 
Lee G. MLACP: machine-learning-based prediction of 
anticancer peptides. Oncotarget. 2017;8:77121–36. 

Mansour SC, Pena OM, Hancock REW. Host defense 
peptides: front-line immunomodulators. Trends Immu-
nol. 2014;35:443–50. 

McKeown STW, Lundy FT, Nelson J, Lockhart D, Ir-
win CR, Cowan CG, et al. The cytotoxic effects of hu-
man neutrophil peptide-1 (HNP1 and lactoferrin on 
oral squamous cell carcinoma (OSCC in vitro. Oral 
Oncol. 2006;42:685–90. 

Melo MN, Ferre R, Feliu L, Bardají E, Planas M, Cas-
tanho MARB. Prediction of antibacterial activity from 
physicochemical properties of antimicrobial peptides. 
PLoS ONE. 2011;6:e28549. 

Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, 
Darewicz M. BIOPEP database and other programs for 
processing bioactive peptide sequences. J AOAC Int. 
2008;91:965–80. 

Mohseni Bababdani B, Mousavi M. Gravitational 
search algorithm: A new feature selection method for 
QSAR study of anticancer potency of imidazo[4,5-
b]pyridine derivatives. Chemometr Intell Lab Syst. 
2013;122:1–11. 

Nagarajan V, Kaushik N, Murali B, Zhang C, Lakhera 
S, Elasri MO, et al. A Fourier transformation based 
method to mine peptide space for antimicrobial activ-
ity. BMC Bioinformatics. 2006;7(Suppl 2):S2. 

Nantasenamat C, Prachayasittikul V. Maximizing 
computational tools for successful drug discovery. Ex-
pert Opin Drug Discov. 2015;10:321–9. 

Nantasenamat C, Worachartcheewan A, Jamsak S, 
Preeyanon L, Shoombuatong W, Simeon S, et al. Au-
toWeka: toward an automated data mining software for 
QSAR and QSPR studies. Methods Mol Biol. 2015; 
1260:119–47. 

Narayana JL, Huang H-N, Wu C-J, Chen J-Y. Efficacy 
of the antimicrobial peptide TP4 against Helicobacter 
pylori infection: in vitro membrane perturbation via 
micellization and in vivo suppression of host immune 
responses in a mouse model. Oncotarget. 2015;6: 
12936–54. 

Nasrabadi NM. Pattern recognition and machine learn-
ing. J Electron Imaging. 2007;16:049901. 

Nongonierma AB, FitzGerald RJ. Learnings from 
quantitative structure–activity relationship (QSAR 
studies with respect to food protein-derived bioactive 
peptides: a review. RSC Adv. 2016;6:75400–13. 

O’Brien-Simpson NM, Hoffmann R, Chia CSB, Wade 
JD. Antimicrobial and anticancer peptides (Editorial). 
Front Chem. 2018;6:13. 

OECD (Organization For Economic Co-operation and 
Development). Guidance Document on the Validation 
of (Quantitative Structure-Activity Relationship 
[(QSAR] Models. Paris: OECD, 2014 (OECD Series 
on Testing and Assessment, No. 69). 

Papo N, Shai Y. New lytic peptides based on the D,L-
amphipathic helix motif preferentially kill tumor cells 
compared to normal cells. Biochemistry. 2003;42: 
9346–54. 



EXCLI Journal 2018;17:734-752 – ISSN 1611-2156 
Received: June 20, 2018, accepted: July 10, 2018, published: July 25, 2018 

 

 

751 

Papo N, Seger D, Makovitzki A, Kalchenko V, Eshhar 
Z, Degani H, et al. Inhibition of tumor growth and 
elimination of multiple metastases in human prostate 
and breast xenografts by systemic inoculation of a host 
defense-like lytic peptide. Cancer Res. 2006;66:5371–
8. 

Pasupuleti M, Schmidtchen A, Malmsten M. Antimi-
crobial peptides: key components of the innate immune 
system. Crit Rev Biotechnol. 2012;32:143–71. 

Penchala SC, Miller MR, Pal A, Dong J, Madadi NR, 
Xie J, et al. A biomimetic approach for enhancing the 
in vivo half-life of peptides. Nat Chem Biol. 2015;11: 
793–8. 

Podust VN, Sim B-C, Kothari D, Henthorn L, Gu C, 
Wang C, et al. Extension of in vivo half-life of biolog-
ically active peptides via chemical conjugation to 
XTEN protein polymer. Protein Eng Des Sel. 2013;26: 
743–53. 

Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. 
Application of computational methods for anticancer 
drug discovery, design, and optimization. Bol Méd 
Hosp Infant México. 2016;73:411–23. 

Pratiwi R, Malik AA, Schaduangrat N, Prachayasit-
tikul V, Wikberg JES, Nantasenamat C, et al. CryoPro-
tect: a web server for classifying antifreeze proteins 
from nonantifreeze proteins. J Chem. 2017;2017: 
9861752. 

Reddy KVR, Yedery RD, Aranha C. Antimicrobial 
peptides: premises and promises. Int J Antimicrob 
Agents. 2004;24:536–47. 

Riedl S, Zweytick D, Lohner K. Membrane-active host 
defense peptides--challenges and perspectives for the 
development of novel anticancer drugs. Chem Phys Li-
pids. 2011;164:766–81. 

Rozek T, Wegener KL, Bowie JH, Olver IN, Carver 
JA, Wallace JC, et al. The antibiotic and anticancer ac-
tive aurein peptides from the Australian bell frogs Li-
toria aurea and Litoria raniformis. Eur J Biochem. 
2000;267:5330–41. 

Schellenberger V, Wang C-W, Geething NC, Spink BJ, 
Campbell A, To W, et al. A recombinant polypeptide 
extends the in vivo half-life of peptides and proteins in 
a tunable manner. Nat Biotechnol. 2009;27:1186–90. 

Shi LM, Fan Y, Myers TG, O’Connor PM, Paull KD, 
Friend SH, et al. Mining the NCI anticancer drug dis-
covery databases: genetic function approximation for 
the QSAR study of anticancer ellipticine analogues. J 
Chem Inf Comput Sci. 1998;38:189–99. 

Shoombuatong W, Hongjaisee S, Barin F, Chaijaru-
wanich J, Samleerat T. HIV-1 CRF01_AE coreceptor 
usage prediction using kernel methods based logistic 
model trees. Comput Biol Med. 2012;42:885–9. 

Shoombuatong W, Prachayasittikul V, Anuwong-
charoen N, Songtawee N, Monnor T, Prachayasittikul 
S, et al. Navigating the chemical space of dipeptidyl 
peptidase-4 inhibitors. Drug Des Devel Ther. 2015a;9: 
4515–49. 

Shoombuatong W, Prachayasittikul V, Prachayasit-
tikul V, Nantasenamat C. Prediction of aromatase in-
hibitory activity using the efficient linear method 
(ELM). EXCLI J. 2015b;14:452–64. 

Shoombuatong W, Nabu S, Simeon S, Prachayasittikul 
V, Lapins M, Wikberg JES, et al. Extending prote-
ochemometric modeling for unraveling the sorption 
behavior of compound–soil interaction. Chemometr 
Intell Lab Syst. 2016;151:219–27. 

Shoombuatong W, Prathipati P, Owasirikul W, 
Worachartcheewan A, Simeon S, Anuwongcharoen N, 
et al. Towards the revival of interpretable QSAR mod-
els. In: Kunal R (ed): Advances in QSAR modeling (pp 
3-55). Basel: Springer International Publ., 2017a. 
(Challenges and Advances in Computational Chemis-
try and Physics, Vol. 24). 

Shoombuatong W, Prathipati P, Prachayasittikul V, 
Schaduangrat N, Malik AA, Pratiwi R, et al. Towards 
predicting the cytochrome P450 modulation: from 
QSAR to proteochemometric modeling. Curr Drug 
Metab. 2017b;18:540–55. 

Simeon S, Li H, Win TS, Malik AA, Kandhro AH, 
Piacham T, et al. PepBio: predicting the bioactivity of 
host defense peptides. RSC Adv. 2017;7:35119–34. 

Singh S, Chaudhary K, Dhanda SK, Bhalla S, Usmani 
SS, Gautam A, et al. SATPdb: a database of structur-
ally annotated therapeutic peptides. Nucleic Acids Res. 
2016;44:1119-26. 

Spinks CB, Zidan AS, Khan MA, Habib MJ, Faustino 
PJ. Pharmaceutical characterization of novel tenofovir 
liposomal formulations for enhanced oral drug deliv-
ery: in vitro pharmaceutics and Caco-2 permeability in-
vestigations. Clin Pharmacol. 2017;9:29–38. 

Steiner H, Hultmark D, Engström A, Bennich H, Bo-
man HG. Sequence and specificity of two antibacterial 
proteins involved in insect immunity. Nature. 1981; 
292:246–8. 

Thundimadathil J. Cancer treatment using peptides: 
current therapies and future prospects. J Amino Acids. 
2012;2012:967347. 



EXCLI Journal 2018;17:734-752 – ISSN 1611-2156 
Received: June 20, 2018, accepted: July 10, 2018, published: July 25, 2018 

 

 

752 

Tong J, Zhao X, Zhong L. QSAR studies of imid-
azo[4,5-b]pyridine derivatives as anticancer drugs us-
ing RASMS method. Med Chem Res. 2014;23:4883–
92. 

Tropsha A. Best practices for QSAR model develop-
ment, validation, and exploitation. Mol Inform. 2010; 
29:476–88. 

Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam 
A, Raghava GPS. In silico models for designing and 
discovering novel anticancer peptides. Sci Rep. 2013; 
3:2984. 

Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, 
Mathur D, et al. CancerPPD: a database of anticancer 
peptides and proteins. Nucleic Acids Res. 2015;43: 
D837-43. 

Tørfoss V, Ausbacher D, Cavalcanti-Jacobsen C de A, 
Hansen T, Brandsdal B-O, Havelkova M, et al. Synthe-
sis of anticancer heptapeptides containing a unique lip-
ophilic β2,2-amino acid building block. J Pept Sci. 
2012;18:170–6. 

Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Ku-
mar P, et al. THPdb: Database of FDA-approved pep-
tide and protein therapeutics. PLoS ONE. 2017;12: 
e0181748. 

Vedham V, Divi RL, Starks VL, Verma M. Multiple 
infections and cancer: implications in epidemiology. 
Technol. Cancer Res Treat. 2014;13:177–94. 

Vijayakumar S, Ptv L. ACPP: A web server for predic-
tion and design of anti-cancer peptides. Int J Pept Res 
Ther. 2015;21:99–106. 

Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. 
Synthetic therapeutic peptides: science and market. 
Drug Discov Today. 2010;15:40–56. 

Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. 
CAMPR3: a database on sequences, structures and sig-
natures of antimicrobial peptides. Nucleic Acids Res. 
2016;44:D1094-7. 

Wang G, Li X, Wang Z. APD2: the updated antimicro-
bial peptide database and its application in peptide de-
sign. Nucleic Acids Res. 2009;37:933-7. 

Wang G, Li X, Wang Z. APD3: the antimicrobial pep-
tide database as a tool for research and education. Nu-
cleic Acids Res. 2016;44:1087-93. 

Wang J, Yin T, Xiao X, He D, Xue Z, Jiang X, et al. 
StraPep: a structure database of bioactive peptides. Da-
tabase. 2018;2018:bay038. 

WHO. Cancer. 2018a. Available from: 
http://www.who.int/news-room/fact-sheets/detail/can-
cer. 

WHO. Antimicrobial resistance. 2018b. Available 
from: http://www.who.int/news-room/fact-sheets/de-
tail/antimicrobial-resistance. 

Win TS, Malik AA, Prachayasittikul V, Wikberg JES, 
Nantasenamat C, Shoombuatong W. HemoPred: a web 
server for predicting the hemolytic activity of peptides. 
Future Med Chem. 2017;9:275–91. 

Xu L, Liang G, Wang L, Liao C. A novel hybrid se-
quence-based model for identifying anticancer pep-
tides. Genes. 2018;9(3). 

Zasloff M. Magainins, a class of antimicrobial peptides 
from Xenopus skin: isolation, characterization of two 
active forms, and partial cDNA sequence of a precur-
sor. Proc Natl Acad Sci USA. 1987;84:5449–53. 

Zhao X, Wu H, Lu H, Li G, Huang Q. LAMP: A data-
base linking antimicrobial peptides. PLoS ONE. 2013; 
8:e66557. 

Zhou P, Tian F, Wu Y, Li Z, Shang Z. Quantitative Se-
quence-Activity Model (QSAM): applying QSAR 
strategy to model and predict bioactivity and function 
of peptides, proteins and nucleic acids. Curr Comput 
Aid Drug Des. 2008;4:311–21. 

 


