Next Article in Journal
A Fast CU Partition Algorithm Based on Gradient Structural Similarity and Texture Features
Previous Article in Journal
Crossover Dynamics of Rotavirus Disease under Fractional Piecewise Derivative with Vaccination Effects: Simulations with Real Data from Thailand, West Africa, and the US
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Parameterized Quantum Fractional Integral Inequalities Involving s-Convex Functions and Applications

1
Department of Mathematics, Faculty of Technical and Natural Sciences, University “Ismail Qemali”, 9400 Vlora, Albania
2
Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
3
Department of Mathematics and Statistics, Hazara University, Mansehra 21300, Pakistan
4
Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(12), 2643; https://doi.org/10.3390/sym14122643
Submission received: 10 November 2022 / Revised: 3 December 2022 / Accepted: 5 December 2022 / Published: 14 December 2022
(This article belongs to the Section Mathematics)

Abstract

:
Convexity performs the appropriate role in the theoretical study of inequalities according to the nature and behavior. Its significance is raised by the strong connection between symmetry and convexity. In this article, we consider a new parameterized quantum fractional integral identity. By applying this identity, we obtain as main results some integral inequalities of trapezium, midpoint and Simpson’s type pertaining to s-convex functions. Moreover, we deduce several special cases, which are discussed in detail. To validate our theoretical findings, an example and application to special means of positive real numbers are presented. Numerical analysis investigation shows that the mixed fractional calculus with quantum calculus give better estimates compared with fractional calculus or quantum calculus separately.

1. Introduction

Integral inequalities are very useful tools for finding estimations and they can be applied in different fields of mathematics, such as FC and DFC etc., see [1,2,3,4,5,6].
Convexity study is very crucial for the theoretical behavior of mathematical inequalities, e.g., [7,8,9]. For some other theoretical studies of inequalities on different types of convex functions, see e.g., s-geometrically [10], GA -convex [11], MT -convex [12], ( α , m ) -convex [13], F -convex [14], η ψ -convex [15]; a new class of convexity [16] and many other types can be found in [17]. There exist strong linkages and expansive features between the different disciplines of convexity and symmetric function, including probability theory, convex functions, and the geometry of convex functions on convex sets.
Definition 1
([17]). A function Y : I R R is said to be convex, if
Y ( ς ϑ 1 + ( 1 ς ) ϑ 2 ) ς Y ( ϑ 1 ) + ( 1 ς ) Y ( ϑ 2 ) ,
holds for all ϑ 1 , ϑ 2 I , and ς [ 0 , 1 ] . Likewise Υ is concave if Y is convex.
Definition 2
([18]). A function Y : I R R is said to be s-convex (in the second sense) for some fixed s ( 0 , 1 ] , if
Y ( ς ϑ 1 + ( 1 ς ) ϑ 2 ) ς s Y ( ϑ 1 ) + ( 1 ς ) s Y ( ϑ 2 ) ,
holds for all ϑ 1 , ϑ 2 I and ς [ 0 , 1 ] .
Furthermore, for convex functions and its types many basic inequalities are found such as H-H type [19], Ostrowski type [20], Simpson type [21,22,23,24,25,26], Hardy type [27], Olsen type [28], Gagliardo–Nirenberg type [29], Opial type [30] and Rozanova type [31]. The symmetrical behavior manifests itself naturally in the majority of the aforementioned inequalities.
In this paper, we are focused on three basic integral inequalities, respectively, H-H (trapezium-type inequality), Ostrowski (midpoint-type inequality as a special case) and Simpson types as follows:
Theorem 1
((H-H type inequality) [32]). Suppose that Y : ϑ 1 , ϑ 2 R is a convex function, then the following double inequality holds true:
Y ϑ 1 + ϑ 2 2 1 ϑ 2 ϑ 1 ϑ 1 ϑ 2 Y ( ς ) d ς Y ( ϑ 1 ) + Y ( ϑ 2 ) 2 .
Theorem 2
((Ostrowski-type inequality) [33]). Assume that Y : I R R is a differentiable function on I and let ϑ 1 , ϑ 2 I (the interior of I ) with ϑ 1 < ϑ 2 . If Y ( ξ ) M for all ξ [ ϑ 1 , ϑ 2 ] , then the following inequality holds true:
Y ( ξ ) 1 ϑ 2 ϑ 1 ϑ 1 ϑ 2 Y ( ς ) d ς M ( ϑ 2 ϑ 1 ) 1 4 + ξ ϑ 1 + ϑ 2 2 2 ( ϑ 2 ϑ 1 ) 2 .
Choosing ξ = ϑ 1 + ϑ 2 2 in (2), we obtain the following midpoint-type inequality:
Y ϑ 1 + ϑ 2 2 1 ϑ 2 ϑ 1 ϑ 1 ϑ 2 Y ( ς ) d ς M ( ϑ 2 ϑ 1 ) 4 .
Theorem 3
((Simpson-type inequality) [34]). Suppose that Y : [ ϑ 1 , ϑ 2 ] R is a four times continuous and differentiable function on ( ϑ 1 , ϑ 2 ) such that Y ( 4 ) : = sup ς ( ϑ 1 , ϑ 2 ) Y ( 4 ) ( ς ) < with ϑ 1 < ϑ 2 . Then, the following inequality holds true:
1 6 Y ( ϑ 1 ) + 4 Y ϑ 1 + ϑ 2 2 + Y ( ϑ 2 ) 1 ϑ 2 ϑ 1 ϑ 1 ϑ 2 Y ( ς ) d ς 1 2880 ( ϑ 2 ϑ 1 ) 4 Y ( 4 ) .
Let us recall some published papers about the above inequalities using QC that inspired us.
Regarding H-H type inequalities in QC, there are many recently published papers in this direction. For example, Tariboon and Ntouyas [35] obtained q ˜ -analogue of trapezium’s inequality using the concepts of QC (also known as calculus without limits) on the finite intervals. By taking q ˜ 1 , we obtain classical calculus, see [36]. Alp et al. [37] obtained a corrected q ˜ -analog of H-H inequality. Noor et al. [38] and Sudsutad et al. [39] derived some more q ˜ -analogs of trapezium-like inequalities involving first-order q ˜ -differentiable convex functions and Liu and Zhuang [40] established these analogs via second-order q ˜ -differentiable convex functions. Budak et al. [41] obtain some refinements of quantum-type inequalities. Rashid et al. [42] derived new quantum integral inequalities for some new classes of generalized ψ -convex functions. Moreover, regarding Ostrowski and Simpson–Newton-like inequalities in QC, some good papers have been published. For example, Ali et al. [43] give some quantum Ostrowski-type inequalities for twice quantum differentiable functions and Butt et al. [44] derived new quantum Mercer estimates of Simpson–Newton-like inequalities via convexity.
Wang et al. [45] developed new Ostrowski-type inequalities via q ˜ -fractional integrals involving s-convex functions. To the best of our knowledge, this is the first published paper working in this new direction that mixed together the FC with QC. Inspired from this paper, we attempt to give some new quantum fractional integral inequalities of trapezium, midpoint and Simpson’s type.
The following is the structure of this article: Section 2 provides a brief overview of the fundamentals FC and QC. Section 3 contains the main results of the article, which consists of proving a new parameterized quantum fractional integral identity that will be used to derive some integral inequalities of trapezium, midpoint and Simpson’s type via s-convex functions. From our main results, we discuss in detail several special cases. In Section 4, we derive an example and numerical analysis to show the efficiency of our theoretical results. Furthermore, numerical analysis will show that the mixed FC with QC give better estimates compared with FC or QC separately. This justifies the advantage of this proposed technique. In Section 5, we offer an application on special means of positive real numbers. In Section 6, conclusion and future research is given.

2. Preliminaries

Let us denote, respectively, L [ ϑ 1 , ϑ 2 ] the set of all Lebesgue integrable functions on [ ϑ 1 , ϑ 2 ] and C [ ϑ 1 , ϑ 2 ] the set of all differentiable continuous functions on [ ϑ 1 , ϑ 2 ] .

2.1. Fractional Calculus

Definition 3.
Let α > 0 , 0 ϑ 1 < ϑ 2 and Y L [ ϑ 1 , ϑ 2 ] . Then the R-L operators of order α are defined by
J ϑ 1 + α Y ( ξ ) = 1 Γ ( α ) ϑ 1 ξ ( ξ ς ) α 1 Y ( ς ) d ς , ϑ 1 < ξ
and
J ϑ 2 α Y ( ξ ) = 1 Γ ( α ) ξ ϑ 2 ( ς ξ ) α 1 Y ( ς ) d ς , ξ < ϑ 2 ,
where Γ ( · ) is gamma function, defined by
Γ ( α ) = 0 ς α 1 e ς d ς , Γ ( α + 1 ) = α Γ ( α ) .
For α = 1 , we obtain the classical Riemann integrals.

2.2. Quantum Calculus

Throughout the remaining paper, let 0 < q ˜ < 1 be a constant.
Definition 4
([36]). For Y C [ ϑ 1 , ϑ 2 ] , the left q ˜ -derivative of Υ at ξ [ ϑ 1 , ϑ 2 ] is given by
ϑ 1 D q ˜ Y ( ξ ) = Y ( ξ ) Y q ˜ ξ + ( 1 q ˜ ) ϑ 1 ( 1 q ˜ ) ( ξ ϑ 1 ) , ξ ϑ 1 .
The function Υ is said to be q ˜ -differentiable on [ ϑ 1 , ϑ 2 ] if ϑ 1 D q ˜ Y ( ξ ) exists for all ξ [ ϑ 1 , ϑ 2 ] . If we choose ϑ 1 = 0 , then we use the notation ϑ 1 D q ˜ Y ( ξ ) = D q ˜ Y ( ξ ) , which is the q ˜ -Jackson derivative [36,37,46].
The q ˜ -integer is expressed as follows:
[ n ] q ˜ : = q ˜ n 1 q ˜ 1 = 1 + q ˜ + q ˜ 2 + + q ˜ n 1 , n N , q ˜ ( 0 , 1 ) .
The following q ˜ -integral along with its properties can be studied in [37].
Definition 5.
Suppose that Y C [ ϑ 1 , ϑ 2 ] . Then q ˜ -definite integral for ξ [ ϑ 1 , ϑ 2 ] is defined as
ϑ 1 ξ Y ( ς ) ϑ 1 d q ˜ ς = ( 1 q ˜ ) ( ξ ϑ 1 ) r = 0 q ˜ r Y q ˜ r ξ + ( 1 q ˜ r ) ϑ 1 .
Choosing ϑ 1 = 0 in (7), we have
0 ξ Y ( ς ) d q ˜ ς = ( 1 q ˜ ) ξ r = 0 q ˜ r Y q ˜ r ξ ,
which gives
0 1 ς α + s d q ˜ ς = 1 [ α + s + 1 ] q ˜ , 0 1 ς α ( 1 ς ) s d q ˜ ς = Γ q ˜ ( α + 1 ) Γ q ˜ ( s + 1 ) Γ q ˜ ( α + s + 2 ) ,
where q ˜ -gamma function for ξ > 0 is defined by
Γ q ˜ ( ξ ) = 0 ς ξ 1 E q ˜ q ˜ ς d q ˜ ς , Γ q ˜ ( ξ + 1 ) = [ ξ ] q ˜ Γ q ˜ ( ξ ) ,
and q ˜ -exponential function is given as
E q ˜ ς = r = 0 q ˜ r ( r 1 ) 2 ς r [ r ] q ˜ ! .
The following q ˜ -fractional integrals can be studied in [47].
Definition 6.
Let α > 0 , 0 ϑ 1 < ϑ 2 and Y L [ ϑ 1 , ϑ 2 ] . Then, the q ˜ -R-L of order α are defined by
J q ˜ , ϑ 1 + α Y ( ξ ) = 1 Γ q ˜ ( α ) ϑ 1 ξ ( ξ q ˜ ς ) α 1 Y ( ς ) ϑ 1 d q ˜ ς , ϑ 1 < ξ
and
J q ˜ , ϑ 2 α Y ( ξ ) = 1 Γ q ˜ ( α ) q ˜ ξ ϑ 2 ( ς q ˜ ξ ) α 1 Y ( ς ) d q ˜ ς , ξ < ϑ 2 ,
where Γ q ˜ ( · ) is q ˜ -gamma function. For q ˜ 1 , we obtain R-L operators.
Theorem 4
((Formula for q ˜ -integration by parts) [35]). Let Y 1 , Y 2 C [ ϑ 1 , ϑ 2 ] , then for all ξ [ ϑ 1 , ϑ 2 ] , we have
ϑ 1 ξ Y 1 ( ς ) ϑ 1 D q ˜ Y 2 ( ς ) ϑ 1 d q ˜ ς = Y 1 ( ξ ) Y 2 ( ξ ) Y 1 ( ϑ 1 ) Y 2 ( ϑ 1 ) ϑ 1 ξ Y 2 q ˜ ς + ( 1 q ˜ ) ϑ 1 ϑ 1 D q ˜ Y 1 ( ς ) ϑ 1 d q ˜ ς .
Theorem 5
(( q ˜ -Hölder’s inequality) [48]). Let Y 1 , Y 2 be two q ˜ -integrable functions on [ ϑ 1 , ϑ 2 ] such that p , q ˜ * > 1 , and 1 p + 1 q ˜ * = 1 , then we have
ϑ 1 ϑ 2 Y 1 ( ς ) Y 2 ( ς ) ϑ 1 d q ˜ ς ϑ 1 ϑ 2 Y 1 ( ς ) p ϑ 1 d q ˜ ς 1 p ϑ 1 ϑ 2 Y 2 ( ς ) q ˜ * ϑ 1 d q ˜ ς 1 q ˜ * .
Theorem 6
(( q ˜ -Power mean inequality) [48]). Let Y 1 , Y 2 be two q ˜ -integrable functions on [ ϑ 1 , ϑ 2 ] such that q ˜ * 1 , then we have
ϑ 1 ϑ 2 Y 1 ( ς ) Y 2 ( ς ) ϑ 1 d q ˜ ς ϑ 1 ϑ 2 Y 1 ( ς ) ϑ 1 d q ˜ ς 1 1 q ˜ * ϑ 1 ϑ 2 Y 1 ( ς ) Y 2 ( ς ) q ˜ * ϑ 1 d q ˜ ς 1 q ˜ * .

3. Main Results

For the simplicity of notation, let
δ ( ξ , α ) : = 0 1 ξ ς α d ς , ρ ( ξ , p , α ) : = 0 1 ξ ς α p d ς .
Let us recall the well-known beta and hypergeometric functions below:
β ( x , y ) : = 0 1 ς x 1 ( 1 ς ) y 1 d ς , x , y > 0
and
2 F 1 ϑ 1 , ϑ 2 ; ϑ 3 ; z : = 1 β ( ϑ 2 , ϑ 3 ϑ 2 ) 0 1 ς ϑ 2 1 ( 1 ς ) ϑ 3 ϑ 2 1 ( 1 z ς ) ϑ 1 d ς , R ( ϑ 3 ) > R ( ϑ 2 ) > 0 , | z | 1 .
The following two lemmas are very useful in the sequel.
Lemma 1.
For α > 0 and 0 ξ 1 , we have
δ ( ξ , α ) : = 1 α + 1 , ξ = 0 ; 2 α ξ 1 + 1 α + 1 α + 1 ξ , 0 < ξ < 1 ; α α + 1 , ξ = 1 .
Proof. 
The proof is evident. □
Lemma 2.
For α > 0 , p 1 and 0 ξ 1 , we have
ρ ( ξ , p , α ) : = 1 p α + 1 , ξ = 0 ; ξ p + 1 α α β 1 α , p + 1 + ( 1 ξ ) p + 1 α ( p + 1 ) × 2 F 1 1 1 α , 1 ; p + 2 ; 1 ξ , 0 < ξ < 1 ; 1 α β 1 α , p + 1 , ξ = 1 .
Proof. 
The proof is a straightforward computation; we omit here their details. □
We are in position to prove a new lemma including q ˜ -R-L operators in order to establish our main results.
Lemma 3.
Let Y : [ ϑ 1 , ϑ 2 ] R be a q ˜ -differentiable function, where 0 < q ˜ < 1 such that 0 ϑ 1 < ϑ 2 . If D q ˜ Y L [ ϑ 1 , ϑ 2 ] , η , σ R and α N , then we have
( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) = ( ϑ 2 ϑ 1 ) α 2 α + 1 × 0 1 1 η ς α D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 + σ ς α D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d q ˜ ς .
Proof. 
Let us denote, respectively,
I 1 : = 0 1 1 η ς α D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 d q ˜ ς
and
I 2 : = 0 1 σ ς α D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d q ˜ ς .
By using the formula of q ˜ -integration by parts, we have
I 1 = ( 1 η ) 0 1 D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 d q ˜ ς 0 1 ς α D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 d q ˜ ς = 2 ( 1 η ) ϑ 2 ϑ 1 ϑ 1 ϑ 1 + ϑ 2 2 ϑ 1 D q ˜ Y ( ς ) ϑ 1 d q ˜ ς ς α Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 ϑ 1 ϑ 1 + ϑ 2 2 | 0 1 + [ α ] q ˜ ϑ 1 ϑ 1 + ϑ 2 2 0 1 ς α 1 Y q ˜ ς ϑ 1 + ( 1 q ˜ ς ) ϑ 1 + ϑ 2 2 d q ˜ ς = 2 ( 1 η ) ϑ 2 ϑ 1 Y ϑ 1 + ϑ 2 2 Y ( ϑ 1 ) 2 ϑ 1 ϑ 2 Y ( ϑ 1 ) + 2 [ α ] q ˜ ( 1 q ˜ ) q ˜ α ( ϑ 2 ϑ 1 ) Y ( ϑ 1 ) [ α ] q ˜ Γ q ˜ ( α ) q ˜ α 2 ϑ 2 ϑ 1 α + 1 1 Γ q ˜ ( α ) ϑ 1 ϑ 1 + ϑ 2 2 ϑ 1 + ϑ 2 2 q ˜ ς α 1 Y ( ς ) d q ˜ ς = 2 ( 1 η ) ϑ 2 ϑ 1 Y ϑ 1 + ϑ 2 2 Y ( ϑ 1 ) + 2 ϑ 2 ϑ 1 Y ( ϑ 1 ) + 2 [ α ] q ˜ ( 1 q ˜ ) q ˜ α ( ϑ 2 ϑ 1 ) Y ( ϑ 1 ) Γ q ˜ ( α + 1 ) q ˜ α 2 ϑ 2 ϑ 1 α + 1 J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 .
Similarly, we obtain
I 2 = σ 0 1 D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d q ˜ ς 0 1 ς α D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d q ˜ ς = 2 σ ϑ 2 ϑ 1 Y ( ϑ 2 ) Y ϑ 1 + ϑ 2 2 + 2 ϑ 2 ϑ 1 Y ϑ 1 + ϑ 2 2 + 2 [ α ] q ˜ ( 1 q ˜ ) q ˜ α ( ϑ 2 ϑ 1 ) Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α 2 ϑ 2 ϑ 1 α + 1 J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) .
By adding (13) and (14) and multiplying them by ( ϑ 2 ϑ 1 ) α 2 α + 1 , we obtain the desired identity (12). □
Remark 1.
Taking q ˜ 1 in Lemma 3, we have the following fractional identity:
( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) Γ ( α + 1 ) ϑ 2 ϑ 1 J ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) = ( ϑ 2 ϑ 1 ) α 2 α + 1 0 1 1 η ς α Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 + σ ς α Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d ς .
Remark 2.
Choosing α = 1 in Lemma 3, we obtain the following q ˜ -identity:
1 2 η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + 1 q ˜ q ˜ Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 1 q ˜ ( ϑ 2 ϑ 1 ) ϑ 1 ϑ 2 Y ( ς ) ϑ 1 d q ˜ ς = ( ϑ 2 ϑ 1 ) 4 0 1 1 η ς D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 + σ ς D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d q ˜ ς .
By using Lemmas 1–3, we established the following q ˜ -fractional integral inequalities.
Theorem 7.
Let Y : [ ϑ 1 , ϑ 2 ] R be a q ˜ -differentiable function, where 0 < q ˜ < 1 such that 0 ϑ 1 < ϑ 2 and η , σ [ 0 , 1 ] . If D q ˜ Y L [ ϑ 1 , ϑ 2 ] and | D q ˜ Y | q ˜ * is s-convex function for some fixed s ( 0 , 1 ] such that p , q ˜ * > 1 , and 1 p + 1 q ˜ * = 1 , then for α N , the following q ˜ -fractional integral inequality holds true:
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 [ s + 1 ] q ˜ 1 q ˜ * { A q ˜ 1 p ( η , p , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + A q ˜ 1 p ( 1 σ , p , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ,
where
A q ˜ ( η , p , α ) : = 0 1 | 1 η ς α | p d q ˜ ς .
Proof. 
By using Lemma 3, q ˜ -Hölder’s inequality, s-convexity of | D q ˜ Y | q ˜ * and properties of modulus, we have
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { 0 1 | 1 η ς α | D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 d q ˜ ς + 0 1 | σ ς α | D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d q ˜ ς } ( ϑ 2 ϑ 1 ) α 2 α + 1 { 0 1 | 1 η ς α | p d q ˜ ς 1 p 0 1 D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 q ˜ * d q ˜ ς 1 q ˜ * + 0 1 | σ ς α | p d q ˜ ς 1 p 0 1 D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 q ˜ * d q ˜ ς 1 q ˜ * } ( ϑ 2 ϑ 1 ) α 2 α + 1 { A q ˜ 1 p ( η , p , α ) 0 1 ς s D q ˜ Y ( ϑ 1 ) q ˜ * + ( 1 ς ) s D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * d q ˜ ς 1 q ˜ * + A q ˜ 1 p ( 1 σ , p , α ) 0 1 ς s D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + ( 1 ς ) s D q ˜ Y ( ϑ 2 ) q ˜ * d q ˜ ς 1 q ˜ * } = ( ϑ 2 ϑ 1 ) α 2 α + 1 [ s + 1 ] q ˜ 1 q ˜ * { A q ˜ 1 p ( η , p , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + A q ˜ 1 p ( 1 σ , p , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } .
The proof of Theorem 7 is completed. □
Corollary 1.
Taking q ˜ 1 in Theorem 7, we have
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) Γ ( α + 1 ) ϑ 2 ϑ 1 J ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 ( s + 1 ) 1 q ˜ * { ρ 1 p ( 1 η , p , α ) | Y ( ϑ 1 ) | q ˜ * + Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + ρ 1 p ( σ , p , α ) Y ϑ 1 + ϑ 2 2 q ˜ * + | Y ( ϑ 2 ) | q ˜ * 1 q ˜ * } .
Corollary 2.
Choosing α = 1 in Theorem 7, we obtain
| 1 2 η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + 1 q ˜ q ˜ Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 1 q ˜ ( ϑ 2 ϑ 1 ) ϑ 1 ϑ 2 Y ( ς ) ϑ 1 d q ˜ ς | ( ϑ 2 ϑ 1 ) 4 [ s + 1 ] q ˜ 1 q ˜ * { R q ˜ 1 p ( η , p ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + R q ˜ 1 p ( 1 σ , p ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ,
where
R q ˜ ( η , p ) : = 0 1 | 1 η ς | p d q ˜ ς .
Corollary 3.
Taking | D q ˜ Y | K in Theorem 7, we obtain
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | K ( ϑ 2 ϑ 1 ) α 2 α 1 q ˜ * + 1 [ s + 1 ] q ˜ 1 q ˜ * A q ˜ 1 p ( η , p , α ) + A q ˜ 1 p ( 1 σ , p , α ) .
Corollary 4.
Choosing s = 1 in Theorem 7, we have
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 ( 1 + q ˜ ) 1 q ˜ * { A q ˜ 1 p ( η , p , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + A q ˜ 1 p ( 1 σ , p , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } .
Corollary 5.
Taking η = σ in Theorem 7, we obtain
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + Y ( ϑ 2 ) + 2 ( 1 η ) Y ϑ 1 + ϑ 2 2 + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 [ s + 1 ] q ˜ 1 q ˜ * { A q ˜ 1 p ( η , p , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + A q ˜ 1 p ( 1 η , p , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } .
Corollary 6.
Choosing η = 1 2 , 2 3 , 1 3 , respectively, in Corollary 5, we obtain the following q ˜ -fractional integral inequalities of trapezium, midpoint and Simpson’s type:
| ( ϑ 2 ϑ 1 ) α 1 2 α Y ( ϑ 1 ) + Y ( ϑ 2 ) 2 + Y ϑ 1 + ϑ 2 2 + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 [ s + 1 ] q ˜ 1 q ˜ * A q ˜ 1 p 1 2 , p , α { | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ;
| ( ϑ 2 ϑ 1 ) α 1 2 α 2 3 Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 + Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 [ s + 1 ] q ˜ 1 q ˜ * { A q ˜ 1 p 2 3 , p , α | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + A q ˜ 1 p 1 3 , p , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ;
| ( ϑ 2 ϑ 1 ) α 1 2 α 1 3 Y ( ϑ 1 ) + 4 Y ϑ 1 + ϑ 2 2 + Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 [ s + 1 ] q ˜ 1 q ˜ * { A q ˜ 1 p 1 3 , p , α | D q ˜ Y ( ϑ 1 ) | q ˜ * + D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + A q ˜ 1 p 2 3 , p , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } .
Theorem 8.
Let Y : [ ϑ 1 , ϑ 2 ] R be a q ˜ -differentiable function, where 0 < q ˜ < 1 such that 0 ϑ 1 < ϑ 2 and η , σ [ 0 , 1 ] . If D q ˜ Y L [ ϑ 1 , ϑ 2 ] and | D q ˜ Y | q ˜ * is s-convex function for some fixed s ( 0 , 1 ] such that q ˜ * 1 , then for α N , the following q ˜ -fractional integral inequality holds true:
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * ( η , α ) C q ˜ ( η , s , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + E q ˜ ( η , s , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 σ , α ) C q ˜ ( 1 σ , s , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + E q ˜ ( 1 σ , s , α ) D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ,
where
M q ˜ ( η , α ) : = 0 1 | 1 η ς α | d q ˜ ς
and
C q ˜ ( η , s , α ) : = 0 1 ς s | 1 η ς α | d q ˜ ς , E q ˜ ( η , s , α ) : = 0 1 ( 1 ς ) s | 1 η ς α | d q ˜ ς .
Proof. 
By using Lemma 3, q ˜ -Power mean inequality, s-convexity of | D q ˜ Y | q ˜ * and properties of modulus, we have
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { 0 1 | 1 η ς α | D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 d q ˜ ς + 0 1 | σ ς α | D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 d q ˜ ς } ( ϑ 2 ϑ 1 ) α 2 α + 1 { 0 1 | 1 η ς α | d q ˜ ς 1 1 q ˜ * 0 1 | 1 η ς α | D q ˜ Y ς ϑ 1 + ( 1 ς ) ϑ 1 + ϑ 2 2 q ˜ * d q ˜ ς 1 q ˜ * + 0 1 | σ ς α | d q ˜ ς 1 1 q ˜ * 0 1 | σ ς α | D q ˜ Y ς ϑ 1 + ϑ 2 2 + ( 1 ς ) ϑ 2 q ˜ * d q ˜ ς 1 q ˜ * } ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * ( η , α ) 0 1 | 1 η ς α | ς s D q ˜ Y ( ϑ 1 ) q ˜ * + ( 1 ς ) s D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * d q ˜ ς 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 σ , α ) 0 1 | σ ς α | ς s D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + ( 1 ς ) s D q ˜ Y ( ϑ 2 ) q ˜ * d q ˜ ς 1 q ˜ * } = ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * ( η , α ) C q ˜ ( η , s , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + E q ˜ ( η , s , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 σ , α ) C q ˜ ( 1 σ , s , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + E q ˜ ( 1 σ , s , α ) D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ,
which completes the proof of Theorem 8. □
Corollary 7.
Taking q ˜ * = 1 in Theorem 8, we have
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 × C q ˜ ( η , s , α ) | D q ˜ Y ( ϑ 1 ) | + E q ˜ ( η , s , α ) + C q ˜ ( 1 σ , s , α ) D q ˜ Y ϑ 1 + ϑ 2 2 + E q ˜ ( 1 σ , s , α ) D q ˜ Y ( ϑ 2 ) .
Corollary 8.
Choosing q ˜ 1 in Theorem 8, we obtain
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) Γ ( α + 1 ) ϑ 2 ϑ 1 J ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { δ 1 1 q ˜ * ( 1 η , α ) C ( η , s , α ) | Y ( ϑ 1 ) | q ˜ * + E ( η , s , α ) Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + δ 1 1 q ˜ * ( σ , α ) C ( 1 σ , s , α ) Y ϑ 1 + ϑ 2 2 q ˜ * + E ( 1 σ , s , α ) Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ,
where
C ( η , s , α ) : = 0 1 ς s | 1 η ς α | d ς , E ( η , s , α ) : = 0 1 ( 1 ς ) s | 1 η ς α | d ς .
Corollary 9.
Taking α = 1 in Theorem 8, we obtain
| 1 2 η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + 1 q ˜ q ˜ Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 1 q ˜ ( ϑ 2 ϑ 1 ) ϑ 1 ϑ 2 Y ( ς ) ϑ 1 d q ˜ ς | ( ϑ 2 ϑ 1 ) 4 { M q ˜ 1 1 q ˜ * ( η ) C q ˜ ( η , s ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + E q ˜ ( η , s ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 σ ) C q ˜ ( 1 σ , s ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + E q ˜ ( 1 σ , s ) D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ,
where
M q ˜ ( η ) : = 0 1 | 1 η ς | d q ˜ ς
and
C q ˜ ( η , s ) : = 0 1 ς s | 1 η ς | d q ˜ ς , E q ˜ ( η , s ) : = 0 1 ( 1 ς ) s | 1 η ς | d q ˜ ς .
Corollary 10.
Choosing | D q ˜ Y | K in Theorem 8, we have
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | K ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * ( η , α ) C q ˜ ( η , s , α ) + E q ˜ ( η , s , α ) 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 σ , α ) C q ˜ ( 1 σ , s , α ) + E q ˜ ( 1 σ , s , α ) 1 q ˜ * } .
Corollary 11.
Taking s = 1 in Theorem 8, we obtain
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + ( 2 η σ ) Y ϑ 1 + ϑ 2 2 + σ Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * ( η , α ) C q ˜ ( η , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + M q ˜ ( η , α ) C q ˜ ( η , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 σ , α ) C q ˜ ( 1 σ , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + M q ˜ ( 1 σ , α ) C q ˜ ( 1 σ , α ) D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ,
where
C q ˜ ( η , α ) : = 0 1 ς | 1 η ς α | d q ˜ ς .
Corollary 12.
Choosing η = σ in Theorem 8, we obtain
| ( ϑ 2 ϑ 1 ) α 1 2 α η Y ( ϑ 1 ) + Y ( ϑ 2 ) + 2 ( 1 η ) Y ϑ 1 + ϑ 2 2 + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * ( η , α ) C q ˜ ( η , s , α ) | D q ˜ Y ( ϑ 1 ) | q ˜ * + E q ˜ ( η , s , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 η , α ) C q ˜ ( 1 η , s , α ) D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + E q ˜ ( 1 η , s , α ) D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } .
Corollary 13.
Taking η = 1 2 , 2 3 , 1 3 , respectively, in Corollary 12, we have the following q ˜ -fractional integral inequalities of trapezium, midpoint and Simpson’s type:
| ( ϑ 2 ϑ 1 ) α 1 2 α Y ( ϑ 1 ) + Y ( ϑ 2 ) 2 + Y ϑ 1 + ϑ 2 2 + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 M q ˜ 1 1 q ˜ * 1 2 , α { C q ˜ 1 2 , s , α | D q ˜ Y ( ϑ 1 ) | q ˜ * + E q ˜ 1 2 , s , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + C q ˜ 1 2 , s , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + E q ˜ 1 2 , s , α D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ;
| ( ϑ 2 ϑ 1 ) α 1 2 α 2 3 Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 + Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * 2 3 , α C q ˜ 2 3 , s , α | D q ˜ Y ( ϑ 1 ) | q ˜ * + E q ˜ 2 3 , s , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * + M q ˜ 1 1 q ˜ * 1 3 , α C q ˜ 1 3 , s , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + E q ˜ 1 3 , s , α D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } ;
| ( ϑ 2 ϑ 1 ) α 1 2 α 1 3 Y ( ϑ 1 ) + 4 Y ϑ 1 + ϑ 2 2 + Y ( ϑ 2 ) + [ α ] q ˜ ( 1 q ˜ ) q ˜ α Y ( ϑ 1 ) + Y ϑ 1 + ϑ 2 2 Γ q ˜ ( α + 1 ) q ˜ α ( ϑ 2 ϑ 1 ) J q ˜ , ϑ 1 + α Y ϑ 1 + ϑ 2 2 + J q ˜ , ϑ 1 + ϑ 2 2 + α Y ( ϑ 2 ) | ( ϑ 2 ϑ 1 ) α 2 α + 1 { M q ˜ 1 1 q ˜ * 1 3 , α C q ˜ 1 3 , s , α | D q ˜ Y ( ϑ 1 ) | q ˜ * + E q ˜ 1 3 , s , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * 1 q ˜ * +   M q ˜ 1 1 q ˜ * 2 3 , α C q ˜ 2 3 , s , α D q ˜ Y ϑ 1 + ϑ 2 2 q ˜ * + E q ˜ 2 3 , s , α D q ˜ Y ( ϑ 2 ) q ˜ * 1 q ˜ * } .

4. Example and Numerical Analysis

4.1. Example

Let Y ( ς ) = ς n + 1 q ˜ * + 1 n + 1 q ˜ * + 1 q ˜ , where n N , q ˜ * 1 and q ˜ ( 0 , 1 ) . After simple calculations, we have D q ˜ Y ( ς ) q ˜ * = ς n + 1 , which shows that | D q ˜ Y ( ς ) | q ˜ * is convex function for all ς > 0 and n N . Then, by applying Corollaries 2 and 9 for specific values s = 1 , ϑ 1 = 0 , ϑ 2 = 1 , and η , σ [ 0 , 1 ] , we deduce the following q ˜ -inequalities:
| 1 2 ( 2 η σ ) 1 2 n + 1 q ˜ * + 1 + σ + 1 q ˜ q ˜ 1 2 n + 1 q ˜ * + 1 1 q ˜ n + 1 q ˜ * + 2 q ˜ | n + 1 q ˜ * + 1 q ˜ 4 ( 1 + q ˜ ) 1 q ˜ * × R q ˜ 1 p ( η , p ) 1 2 n + 1 q ˜ * + R q ˜ 1 p ( 1 σ , p ) 1 + 1 2 n + 1 1 q ˜ * ;
| 1 2 ( 2 η σ ) 1 2 n + 1 q ˜ * + 1 + σ + 1 q ˜ q ˜ 1 2 n + 1 q ˜ * + 1 1 q ˜ n + 1 q ˜ * + 2 q ˜ | n + 1 q ˜ * + 1 q ˜ 4 × { M q ˜ 1 1 q ˜ * ( η ) 1 2 n + 1 M q ˜ ( η ) C q ˜ ( η ) 1 q ˜ * + M q ˜ 1 1 q ˜ * ( 1 σ ) 1 2 n + 1 1 C q ˜ ( 1 σ ) + M q ˜ ( 1 σ ) 1 q ˜ * } ,
where
M q ˜ ( η ) : = 0 1 | 1 η ς | d q ˜ ς , C q ˜ ( η ) : = 0 1 ς | 1 η ς | d q ˜ ς .

4.2. Numerical Analysis

Let us choose ϑ 1 = 0 , ϑ 2 = 1 with s = n = q ˜ * = 1 , α N and q ˜ ( 0 , 1 ) . Using the function Y ( ς ) = ς 3 [ 3 ] q ˜ in Theorem 8, the following Table 1 shows that the mixed FC with QC give better estimates compared to FC or QC separately.

5. Application to Special Means

We consider the following arithmetic mean of real numbers ϑ 1 and ϑ 2 such that 0 ϑ 1 < ϑ 2 :
A ( ϑ 1 , ϑ 2 ) = ϑ 1 + ϑ 2 2 .
For the simplicity of notation, let
Δ q ˜ n , q ˜ * ; ϑ 1 , ϑ 2 : = ( 1 q ˜ ) ( ϑ 2 ϑ 1 ) r = 0 q ˜ r q ˜ r ϑ 2 + ( 1 q ˜ r ) ϑ 1 n + 1 q ˜ * + 1 ,
where n N , q ˜ * 1 , and q ˜ ( 0 , 1 ) .
Proposition 1.
Let n N , q ˜ ( 0 , 1 ) and ϑ 1 , ϑ 2 R , where 0 ϑ 1 < ϑ 2 . Then, for p , q ˜ * > 1 and 1 p + 1 q ˜ * = 1 , we have
| A ϑ 1 n + 1 q ˜ * + 1 , ϑ 2 n + 1 q ˜ * + 1 + A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 + 2 ( 1 q ˜ ) q ˜ A ϑ 1 n + 1 q ˜ * + 1 , A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 2 Δ q ˜ n , q ˜ * ; ϑ 1 , ϑ 2 q ˜ ( ϑ 2 ϑ 1 ) | ( ϑ 2 ϑ 1 ) n + 1 q ˜ * + 1 q ˜ 2 ( 1 + q ˜ ) 1 q ˜ * ×   R q ˜ 1 p 1 2 , p ϑ 1 n + 1 + A n + 1 ( ϑ 1 , ϑ 2 ) 1 q ˜ * + A n + 1 ( ϑ 1 , ϑ 2 ) + ϑ 2 n + 1 1 q ˜ * ,
| 2 3 A ϑ 1 n + 1 q ˜ * + 1 , ϑ 2 n + 1 q ˜ * + 1 + 2 A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 + 2 ( 1 q ˜ ) q ˜ A ϑ 1 n + 1 q ˜ * + 1 , A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 2 Δ q ˜ n , q ˜ * ; ϑ 1 , ϑ 2 q ˜ ( ϑ 2 ϑ 1 ) | ( ϑ 2 ϑ 1 ) n + 1 q ˜ * + 1 q ˜ 2 ( 1 + q ˜ ) 1 q ˜ * × R q ˜ 1 p 1 3 , p ϑ 1 n + 1 + A n + 1 ( ϑ 1 , ϑ 2 ) 1 q ˜ * + R q ˜ 1 p 2 3 , p A n + 1 ( ϑ 1 , ϑ 2 ) + ϑ 2 n + 1 1 q ˜ * .
Proof. 
By applying Corollary 6 for η = σ = 1 2 , 1 3 , respectively, with Y ( ς ) = ς n + 1 q ˜ * + 1 n + 1 q ˜ * + 1 q ˜ for all ς [ ϑ 1 , ϑ 2 ] and α = s = 1 , then we can obtain the desired results (38) and (39). □
Proposition 2.
Let n N , q ˜ ( 0 , 1 ) and ϑ 1 , ϑ 2 R , where 0 ϑ 1 < ϑ 2 . Then, for q ˜ * 1 , we have
| A ϑ 1 n + 1 q ˜ * + 1 , ϑ 2 n + 1 q ˜ * + 1 + A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 + 2 ( 1 q ˜ ) q ˜ A ϑ 1 n + 1 q ˜ * + 1 , A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 2 Δ q ˜ n , q ˜ * ; ϑ 1 , ϑ 2 q ˜ ( ϑ 2 ϑ 1 ) | ( ϑ 2 ϑ 1 ) n + 1 q ˜ * + 1 q ˜ 2 M q ˜ 1 1 q ˜ * 1 2 × C q ˜ 1 2 ϑ 1 n + 1 + E q ˜ 1 2 A n + 1 ( ϑ 1 , ϑ 2 ) 1 q ˜ * + C q ˜ 1 2 A n + 1 ( ϑ 1 , ϑ 2 ) + E q ˜ 1 2 ϑ 2 n + 1 1 q ˜ * ,
| 2 3 A ϑ 1 n + 1 q ˜ * + 1 , ϑ 2 n + 1 q ˜ * + 1 + 2 A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 + 2 ( 1 q ˜ ) q ˜ A ϑ 1 n + 1 q ˜ * + 1 , A n + 1 q ˜ * + 1 ϑ 1 , ϑ 2 2 Δ q ˜ n , q ˜ * ; ϑ 1 , ϑ 2 q ˜ ( ϑ 2 ϑ 1 ) | ( ϑ 2 ϑ 1 ) n + 1 q ˜ * + 1 q ˜ 2 × { M q ˜ 1 1 q ˜ * 1 3 C q ˜ 1 3 ϑ 1 n + 1 + E q ˜ 1 3 A n + 1 ( ϑ 1 , ϑ 2 ) 1 q ˜ * +   M q ˜ 1 1 q ˜ * 2 3 C q ˜ 2 3 A n + 1 ( ϑ 1 , ϑ 2 ) + E q ˜ 2 3 ϑ 2 n + 1 1 q ˜ * } .
Proof. 
By using Corollary 13 for η = σ = 1 2 , 1 3 , respectively, with Y ( ς ) = ς n + 1 q ˜ * + 1 n + 1 q ˜ * + 1 q ˜ for all ς [ ϑ 1 , ϑ 2 ] and α = s = 1 , then we can obtain the desired results (40) and (41). □

6. Conclusions

Convexity performs an essential role in the theoretical field of inequalities. In this article, we established a new parameterized quantum fractional integral identity. By using this, we have explored some quantum fractional integral inequalities of trapezium, midpoint and Simpson’s type via s-convex functions. The Hölders inequality is utilized to obtain the main findings, which has strong applicability in theory of inequalities. Some special cases of our main results are discussed in detail. In order to illustrate the efficiency of the main results, an example and application to special means of positive real numbers are also provided. Numerical analysis investigation shows that the mixed FC with QC yields better estimates compared with FC or QC separately. Interested readers can use q ˜ -deformed real numbers [49] to extend our results. We believe that this novel idea that mixed together FC and QC opens many avenues for interested researchers working in these fields and they can discovering further approximations for different kinds of convexity.

Author Contributions

Conceptualization, A.K., M.S. and G.R.; methodology, A.K. and M.S.; software, A.K.; validation, M.S. and K.N.; formal analysis, A.K. and M.S.; investigation, G.R. and K.N.; resources, A.K.; data curation, M.S. and K.N.; writing—original draft preparation, A.K., M.S. and G.R.; writing—review and editing, A.K. and K.N.; visualization, K.N.; supervision, M.S. and G.R. All authors have read and agreed to the final version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

This research received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Abbreviations

H-HHermite–Hadamard inequality
FCFractional Calculus
DFCDiscrete Fractional Calculus
QCQuantum Calculus
R-LRiemann–Liouville fractional integrals
q ˜ -R-LRiemann–Liouville q ˜ -fractional integrals

References

  1. Cloud, M.J.; Drachman, B.C.; Lebedev, L. Inequalities, 2nd ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
  2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  3. Mohammed, P.O. Some integral inequalities of fractional quantum type. Malaya J. Mat. 2016, 4, 93–99. [Google Scholar]
  4. Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
  5. Nawaz, Y.; Arif, M.S.; Abodayeh, K. A third-order two-stage numerical scheme for fractional Stokes problems: A comparative computational study. J. Comput. Nonlinear Dynam. 2022, 17, 101004. [Google Scholar] [CrossRef]
  6. Nawaz, Y.; Arif, M.S.; Abodayeh, K. A numerical scheme for fractional mixed convection flow over flat and oscillatory plates. J. Comput. Nonlinear Dynam. 2022, 17, 071008. [Google Scholar] [CrossRef]
  7. Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite-Hadamard–Fejér inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function. Symmetry 2020, 12, 1503. [Google Scholar] [CrossRef]
  8. Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
  9. Mohammed, P.O.; Brevik, I. A new version of the Hermite-Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
  10. Zhang, T.Y.; Ji, A.P.; Qi, F. On integral inequalities of Hermite–Hadamard type for s-geometrically convex functions. Abst. Appl. Anal. 2012, 2012, 560586. [Google Scholar] [CrossRef] [Green Version]
  11. Zhang, T.-Y.; Ji, A.-P.; Qi, F. Some inequalities of Hermite–Hadamard type for GA-convex functions with applications to means. Matematiche 2013, 68, 229–239. [Google Scholar]
  12. Mohammed, P.O. Some new Hermite–Hadamard type inequalities for MT-convex functions on differentiable coordinates. J. King Saud Univ. Sci. 2018, 30, 258–262. [Google Scholar] [CrossRef]
  13. Shi, D.P.; Xi, B.Y.; Qi, F. Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals of (α,m)-convex functions. Fract. Differ. Calc. 2014, 4, 31–43. [Google Scholar] [CrossRef]
  14. Mohammed, P.O.; Sarikaya, M.Z. Hermite–Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequal. Appl. 2018, 2018, 359. [Google Scholar] [CrossRef] [PubMed]
  15. Baleanu, D.; Mohammed, P.O.; Zeng, S. Inequalities of trapezoidal type involving generalized fractional integrals. Alex. Eng. J. 2020, 59, 2975–2984. [Google Scholar] [CrossRef]
  16. Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite–Hadamard integral inequalities for a new class of convex functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
  17. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Footscray, Australia, 2000. [Google Scholar]
  18. Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
  19. Fernandez, A.; Mohammed. P. Hermite–Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels. Math. Meth. Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
  20. Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
  21. Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s integral inequalities for twice differentiable convex functions. Math. Probl. Eng. 2020, 2020, 1936461. [Google Scholar] [CrossRef]
  22. Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A.; Chu, Y.M. Estimates of quantum bounds pertaining to new q-integral identity with applications. Adv. Differ. Equ. 2020, 2020, 424. [Google Scholar] [CrossRef]
  23. Luo, C.Y.; Du, T.S.; Kunt, M.; Zhang, Y. New bounds considering the weighted Simpson-like type inequality and applications. J. Inequal. Appl. 2018, 2018, 332. [Google Scholar] [CrossRef] [Green Version]
  24. Qaisar, S.; He, C.; Hussain, S. A generalizations of Simpson’s type inequality for differentiable functions using (α,m)-convex functions and applications. J. Inequal. Appl. 2013, 2013, 158. [Google Scholar] [CrossRef] [Green Version]
  25. Sarikaya, M.Z.; Set, E.; Özdemir, E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef] [Green Version]
  26. Ujević, N. Sharp inequalities of Simpson type and Ostrowski type. Comput. Math. Appl. 2004, 48, 145–151. [Google Scholar] [CrossRef]
  27. Kaijser, S.; Nikolova, L.; Persson, L.E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
  28. Gunawan, H. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef] [Green Version]
  29. Sawano, Y.; Wadade, H. On the Gagliardo–Nirenberg type inequality in the critical Sobolev–Morrey space. J. Fourier Anal. Appl. 2013, 19, 20–47. [Google Scholar] [CrossRef]
  30. Mohammed, P.O.; Abdeljawad, T. Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, 2020, 148. [Google Scholar] [CrossRef]
  31. Zhao, C.J.; Cheung, W.S. On improvements of the Rozanova’s inequality. J. Inequal. Appl. 2011, 2020, 33. [Google Scholar] [CrossRef] [Green Version]
  32. Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  33. Ostrowski, A.M. Über die Absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert. Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
  34. Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
  35. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
  36. Kac, V.; Cheung, P. Quantum Calculus; Springer: Cham, Switzerland, 2002. [Google Scholar]
  37. Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
  38. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  39. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
  40. Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
  41. Budak, H.; Khan, S.; Ali, M.A.; Chu, Y.M. Refinements of quantum Hermite–Hadamard-type inequalities. Open Math. 2021, 19, 724–734. [Google Scholar] [CrossRef]
  42. Rashid, S.; Parveen, S.; Ahmad, H.; Chu, Y.M. New quantum integral inequalities for some new classes of generalized ψ-convex functions and their scope in physical systems. Open Phys. 2021, 19, 35–50. [Google Scholar] [CrossRef]
  43. Ali, M.A.; Budak, H.; Akkurt, A.; Chu, Y.M. Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021, 19, 440–449. [Google Scholar] [CrossRef]
  44. Butt, S.I.; Budak, H.; Nonlaopon, K. New quantum Mercer estimates of Simpson–-Newton-like inequalities via convexity. Symmetry 2022, 14, 1935. [Google Scholar] [CrossRef]
  45. Wang, X.; Khan, K.A.; Ditta, A.; Nosheen, A.; Awan, K.M.; Mabela, R.M. New developments on Ostrowski type inequalities via q- fractional integrals involving s-convex functions. J. Funct. Spaces 2022, 2022, 9742133. [Google Scholar] [CrossRef]
  46. Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  47. Mansour, Z.S.I. On fractional q-Sturm–Liouville problems. J. Fixed Point Theory Appl. 2017, 19, 1591–1612. [Google Scholar] [CrossRef] [Green Version]
  48. Shaimardan, S. Hardy-type inequalities quantum calculus; Lulea University of Technology, Graphic Production: Lulea, Sweden, 2018. [Google Scholar]
  49. Morier-Genoud, S.; Ovsienko, V. On q-deformed real numbers. Exp. Math. 2022, 31, 652–660. [Google Scholar] [CrossRef]
Table 1. Comparison results in Theorem 8 between L.H.S and R.H.S using FC, QC and mixed FC with QC.
Table 1. Comparison results in Theorem 8 between L.H.S and R.H.S using FC, QC and mixed FC with QC.
Values of η , σ FCQCMixed FC with QC
( η , σ ) α = 2 , q ˜ 1 α = 1 , q ˜ = 1 2 α = 2 , q ˜ = 1 2
(0, 0) 0.0208 0.0312 0.1302 0.8791 0.0306 0.1004
(1, 1) 0.0416 0.0625 0.1250 0.5041 0.0422 0.4355
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kashuri, A.; Samraiz, M.; Rahman, G.; Nonlaopon, K. Some New Parameterized Quantum Fractional Integral Inequalities Involving s-Convex Functions and Applications. Symmetry 2022, 14, 2643. https://doi.org/10.3390/sym14122643

AMA Style

Kashuri A, Samraiz M, Rahman G, Nonlaopon K. Some New Parameterized Quantum Fractional Integral Inequalities Involving s-Convex Functions and Applications. Symmetry. 2022; 14(12):2643. https://doi.org/10.3390/sym14122643

Chicago/Turabian Style

Kashuri, Artion, Muhammad Samraiz, Gauhar Rahman, and Kamsing Nonlaopon. 2022. "Some New Parameterized Quantum Fractional Integral Inequalities Involving s-Convex Functions and Applications" Symmetry 14, no. 12: 2643. https://doi.org/10.3390/sym14122643

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop