Derleme
BibTex RIS Kaynak Göster

ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ

Yıl 2021, Cilt: 26 Sayı: 3, 1179 - 1190, 31.12.2021
https://doi.org/10.17482/uumfd.977508

Öz

Maddenin dördüncü hali olan plazmayı kullanan atmosferik basınçlı plazma işlemi otomotivde boyanabilirlik ve yapışma, tekstilde nem tutma, hava geçirgenliği, ağırlık azaltma ve kir iticilik, gıdalarda bakteri inaktivasyonu ve tıpta iyileştirme hızlandırma gibi birçok alanda kullanılmaktadır. Atmosferik basınçlı plazmanın (ABP) polimerler üzerinde kullanılması yüzey modifikasyonu, yüzey aktivasyonu sağlaması, yüzey temizliği gibi avantajlara sahip olması, pek çok kombinasyonu olması ve parametrelerinin (güç, gaz akış debisi vb.) kontrolü ile beklenen özellikleri sağlaması nedeniyle önemli ve popülerliği artan bir konudur. Bu derleme çalışmasında atmosferik basınçlı plazma hakkında genel bilgiler verildikten sonra özellikle polipropilen (PP) malzeme üzerinde atmosferik basınçlı plazma yönteminin uygulamaları örneklenmiş ve benzer alanlarda yapılan çalışmalarla karşılaştırmalar yapılmıştır.

Destekleyen Kurum

TÜBİTAK BİDEB

Proje Numarası

119C206

Teşekkür

Bu çalışma TÜBİTAK BİDEB (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu Bilim İnsanı Destekleme Daire Başkanlığı) tarafından desteklenmiştir (Proje No: 119C206).

Kaynakça

  • 1. Baniya, H. B., Guragain, R. P., Baniya, B. ve Subedi, D. P. (2020) Cold Atmospheric Pressure Plasma Jet for the Improvement of Wettability of Polypropylene, International Journal of Polymer Science, 2020. https://doi.org/10.1155/2020/3860259
  • 2. Černáková, L., Černák, M., Tóth, A., Mikulášová, M., Tomašková, M. ve Kováčik, D. (2015) Chitosan immobilization to the polypropylene nonwoven after activation in atmospheric - Pressure Nitrogen Plasma, Open Chemistry, 13(1), 457–466. https://doi.org/10.1515/chem-2015-0055
  • 3. Chen, G., Yin, M., Huang, J., Yu, J., Qu, S., Wang, X. ve Li, C. (2018) The polypropylene membran modified by an atmospheric pressure plasma jet as a seperator for lithium-ion button battery, Electrochimia Acta, 260 (2018), 489-497. https://doi.org/10.1016/j.electacta. 2017.12.119
  • 4. Chen, W. X., Yu, J. S., Hu, W. ve Chen, G. L. (2016) Partial hydrophilic modification of biaxially oriented polypropylene film by an atmospheric pressure plasma jet with the allylamine monomer, Applied Surface Science, 387, 957–964. https://doi.org/10.1016/j.apsusc.2016.07.043
  • 5. D’Agostino, R., Favia, P., Oehr, C. ve Wertheimer, M. R. (2005) Low-temperature plasma processing of materials: Past, present, and future, Plasma Processes and Polymers, 2(1), 7–15. https://doi.org/10.1002/ppap.200400074
  • 6. Encinas, N., Abenojar, J. ve Martínez, M. A. (2012) Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications, International Journal of Adhesion and Adhesives, 33, 1–6. https://doi.org/10.1016/j.ijadhadh.2011.10.002
  • 7. Esen, S. G., Altuncu, E., Üstel, F. ve Akpınar, S. (2016) Different plasma scannıng velocities effect on surface wettability properties of polypropylene by atmospheric plasma surface activation, Sakarya Üniversitesi Fen Bilimleri Dergisi, 307–316.
  • 8. Fang, Z., Xie, X., Li, J., Yang, H., Qiu, Y. ve Kuffel, E. (2009) Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air, Journal of Physics D: Applied Physics, 42(8). https://doi.org/10.1088/0022-3727/42/8/085204
  • 9. Gomez, E., Rani, D. A., Cheeseman, C. R., Deegan, D., Wise, M. ve Boccaccini, A. R. (2009) Thermal plasma technology for the treatment of wastes: A critical review, Journal of Hazardous Materials, 161(2–3), 614–626. https://doi.org/10.1016/j.jhazmat.2008.04.017
  • 10. Hwang, Y. J., An, J. S., McCord, M. G., Park, S. W. ve Kang, B. C. (2003) The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma, Fibers and Polymers, 4(4), 145–150. https://doi.org/10.1007/BF02908270
  • 11. Hwang, Y. J., Mccord, M. G., an, J. S., Kang, B. C. ve Park, S. W. (2005) Effects of Helium Atmospheric Pressure Plasma Treatment on Low-Stress Mechanical Properties of Polypropylene Nonwoven Fabrics, Textile Research Journal, 75(11), 771–778. https://doi.org/10.1177/0040517505053805
  • 12. Jinka, S., Behrens, R., Korzeniewski, C., Singh, V., Arunachalam, A., Parameswaran, S. ve Ramkumar, S. (2013) Atmospheric pressure plasma treatment and breathability of polypropylene nonwoven fabric, Journal of Industrial Textiles, 42(4), 501–514. https://doi.org/10.1177/1528083712464257
  • 13. Kehrer, M., Duchoslav, J., Hinterreiter, A., Mehic, A., Stehrer, T. ve Stifter, D. (2020), Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures, Surface and Coatings Technology, 384, 125170. https://doi.org/10.1016/j.surfcoat.2019.125170
  • 14. Kehrer, M., Rottensteiner, A., Hartl, W., Duchoslav, J., Thomas, S. ve Stifter, D. (2020) Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces, Surface and Coatings Technology, 403, 126389. https://doi.org/10.1016/j.surfcoat.2020.126389
  • 15. Ku, J. H., Jung, I. H., Rhee, K. Y. ve Park, S. J. (2013) Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites Part B: Engineering, 45(1), 1282–1287. https://doi.org/10.1016/j.compositesb. 2012.06.016
  • 16. Kwon, O. J., Myung, S. W., Lee, C. S. ve Choi, H. S. (2006) Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma, Journal of Colloid and Interface Science, 295(2), 409–416. https://doi.org/10.1016/j.jcis.2005.11.007
  • 17. Kwon, O. J., Tang, S., Myung, S. W., Lu, N. ve Choi, H. S. (2005) Surface characteristics of polypropylene film treated by an atmospheric pressure plasma, Surface and Coatings Technology, 192(1), 1–10. https://doi.org/10.1016/j.surfcoat.2004.09.018
  • 18. Leroux, F., Campagne, C., Perwuelz, A. ve Gengembre, L. (2008) Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure, Journal of Colloid and Interface Science, 328(2), 412–420. https://doi.org/10.1016/j.jcis.2008.09.062
  • 19. Massines, F., Gouda, G., Gherardi, N., Duran, M. ve Croquesel, E. (2001) The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment, Plasmas and Polymers, 6(1–2), 35–49. https://doi.org/10.1023/A:1011365306501
  • 20. Nikitin, D., Lipatova, I., Naumova, I., Sirotkin, N., Pleskunov, P., Krakovsý, I., Khalakhan, I., Choukourov, A., Titov, V. ve Agafonov, A. (2020) Immobilization of chitosan onto polypropylene foil via air/solution atmospheric pressure plasma afterglow treatment, Plasma Chemistry and Plasma Processing, 40:207–220. https://doi.org/10.1007/s11090-019-10029-2
  • 21. Oravcova, A., & Hudec, I. (2010) The influence of atmospheric pressure plasma treatment on surface properties of polypropylene films, Acta Chimica Slovaca, 3(2), 57–62.
  • 22. Palaskar, S. S., Kale, R. D. ve Deshmukh, R. R. (2020) Application of atmospheric pressure plasma for adhesion improvement in polyurethane coating on polypropylene fabrics, Journal of Coatings Technology and Research, 17(2), 485–501. https://doi.org/10.1007/s11998-019-00300-8
  • 23. Pandiyaraj, K. N., Arun Kumar, A., RamKumar, M. C., Padmanabhan, P. V. A., Trimukhe, A. M., Deshmukh, R. R. ve Jaganathan, S. K. (2018) Influence of operating parameters on development of polyethylene oxide-like coatings on the surfaces of polypropylene films by atmospheric pressure cold plasma jet-assisted polymerization to enhance their antifouling properties, Journal of Physics and Chemistry of Solids, 123(June), 76–86. https://doi.org/10.1016/j.jpcs.2018.06.007
  • 24. Penkov, O. V., Khadem, M., Lim, W. S. ve Kim, D. E. (2015) A review of recent applications of atmospheric pressure plasma jets for materials processing, Journal of Coatings Technology and Research, 12(2), 225–235. https://doi.org/10.1007/s11998-014-9638-z
  • 25. Peretich, M. A., Brien, W. F. O. ve Schetz, J. A. (2007) Plasma Torch Power Control for Scramjet Application, Lisans Tezi, Virginia Polytechnic Institute and State University, Virginia.
  • 26. Piel, A. (2010), Plasma Physics: An Introduction to Laborotory, Space and Fusion Plasmas, Springer-Verlag, Heidelberg.
  • 27. Prat, R., Suwa, T., Kogoma, M. ve Okazaki, S. (1998) Adhesive Strength Study and Surface Analysis Using Gas-Phase Chemical Reactions of Atmospheric Pressure Plasma-treated Polypropylene, Journal of Adhesion, 66(1–4), 163–182. https://doi.org/10.1080/ 00218469808009964
  • 28. Sato, T., Akiyama, H., Horiuchi, S. ve Miyamae, T. (2018) Characterization of the polypropylene surface after atmospheric pressure N2 plasma irradiation, Surface Science, 677(April), 93–98. https://doi.org/10.1016/j.susc.2018.06.010
  • 29. Shabanpour, M., Mohammadhosseini, B., Khani, M. R., Khanjani, J., Shokri, B. ve Ghassami, A. (2021) Flame versus air atmospheric gliding arc plasma treatment of polypropylene-based automotive bumpers: Physicochemical characterization and investigation of coating properties, Polymer Engineering and Science, 61(5), 1581–1593. https://doi.org/10.1002/pen.25682
  • 30. Shahidi, S., Ghoranneviss, M., Ilali, R., Karami, M. ve Miladi, M. (2016) Dyeing properties of the atmospheric pressure plasma-treated polypropylene fabric subjected to butane tetra carboxylic acid, Journal of the Textile Institute, 107(5), 636–644. https://doi.org/10.1080/00405000.2015.1054210
  • 31. Shaw, D., West, A., Bredin, J. ve Wagenaars, E. (2016) Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet, Plasma Sources Science and Technology, 25(6). https://doi.org/10.1088/0963-0252/25/6/065018
  • 32. Upadhyay, D. J., Cui, N. Y., Anderson, C. A. ve Brown, N. M. D. (2004) Surface oxygenation of polypropylene using an air dielectric barrier discharge: The effect of different electrode-platen combinations, Applied Surface Science, 229(1–4), 352–364. https://doi.org/10.1016/j.apsusc.2004.02.012
  • 33. Wang, K., Wang, W., Yang, D., Huo, Y. ve Wang, D. (2010) Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma, Applied Surface Science, 256(22), 6859–6864. https://doi.org/10.1016/ j.apsusc.2010.04.101
  • 34. Wertheimer, M. R., Thomas, H. R., Perri, M. J., Klemberg-Sapieha, J. E. ve Martinu, L. (1996) Plasmas and polymers: From laboratory to large scale commercialization. Pure and Applied Chemistry, 68(5), 1047–1053. https://doi.org/10.1351/pac199668051047
  • 35. Yaman, N., Özdogan, E., Kocum, I. C., Ayhan, H., Öktem, T. ve Seventekin, N. (2009) Improvement surface properties of polypropylene and polyester fabrics by glow discharge plasma system under atmospheric condition, Tekstil ve Konfeksiyon, 19(1), 45–51.
  • 36. Yaman, N., Özdoğan, E. ve Seventekin, N. (2013) Effect of Surrounded Air Atmospheric Plasma Treatment on Polypropylene Dyeability Using Cationic Dyestuffs, Fibers and Polymers 2013, 14(9), 1472-1477. https://doi.org/10.1007/s12221-013-1472-x
  • 37. Yaman, N., Özdoǧan, E. ve Seventekin, N. (2011) Atmospheric plasma treatment of polypropylene fabric for improved dyeability with insoluble textile dyestuff, Fibers and Polymers, 12(1), 35–41. https://doi.org/10.1007/s12221-011-0035-2
  • 38. Yáñez-Pacios, A. J. ve Martín-Martínez, J. M. (2017) Surface modification and improved adhesion of wood-plastic composites (WPCs) made with different polymers by treatment with atmospheric pressure rotating plasma jet, International Journal of Adhesion and Adhesives, 77, 204–213. https://doi.org/10.1016/j.ijadhadh.2017.06.001
  • 39. Zhang, P., Zhang, S., Kong, F., Zhang, C., Dong, P., Yan, P. ve Shao, T. (2020) Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum, Surface and Coatings Technology. https://doi.org/10.1016/j.surfcoat.2020.125511

Application of Atmospheric Pressure Plasma on Polypropylene

Yıl 2021, Cilt: 26 Sayı: 3, 1179 - 1190, 31.12.2021
https://doi.org/10.17482/uumfd.977508

Öz

Atmospheric pressure plasma treatment using plasma, which is the fourth state of matter, is used in many areas such as paintability and adhesion in automotive, moisture retention, air permeability, weight reduction and dirt repellency in textiles, bacterial inactivation in foods and acceleration of healing in medicine. Application of atmospheric pressure plasma (APP) on polymers is an important and increasing topic because it has advantages such as surface modification, surface activation, surface cleaning, has many combinations and provides the expected properties by controlling its parameters (power, gas flow rate, etc.). In this study, after giving general information about atmospheric pressure plasma, application of atmospheric pressure plasma especially on polypropylene (PP) material exemplified and comparisons are made with studies in similar fields. 

Proje Numarası

119C206

Kaynakça

  • 1. Baniya, H. B., Guragain, R. P., Baniya, B. ve Subedi, D. P. (2020) Cold Atmospheric Pressure Plasma Jet for the Improvement of Wettability of Polypropylene, International Journal of Polymer Science, 2020. https://doi.org/10.1155/2020/3860259
  • 2. Černáková, L., Černák, M., Tóth, A., Mikulášová, M., Tomašková, M. ve Kováčik, D. (2015) Chitosan immobilization to the polypropylene nonwoven after activation in atmospheric - Pressure Nitrogen Plasma, Open Chemistry, 13(1), 457–466. https://doi.org/10.1515/chem-2015-0055
  • 3. Chen, G., Yin, M., Huang, J., Yu, J., Qu, S., Wang, X. ve Li, C. (2018) The polypropylene membran modified by an atmospheric pressure plasma jet as a seperator for lithium-ion button battery, Electrochimia Acta, 260 (2018), 489-497. https://doi.org/10.1016/j.electacta. 2017.12.119
  • 4. Chen, W. X., Yu, J. S., Hu, W. ve Chen, G. L. (2016) Partial hydrophilic modification of biaxially oriented polypropylene film by an atmospheric pressure plasma jet with the allylamine monomer, Applied Surface Science, 387, 957–964. https://doi.org/10.1016/j.apsusc.2016.07.043
  • 5. D’Agostino, R., Favia, P., Oehr, C. ve Wertheimer, M. R. (2005) Low-temperature plasma processing of materials: Past, present, and future, Plasma Processes and Polymers, 2(1), 7–15. https://doi.org/10.1002/ppap.200400074
  • 6. Encinas, N., Abenojar, J. ve Martínez, M. A. (2012) Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications, International Journal of Adhesion and Adhesives, 33, 1–6. https://doi.org/10.1016/j.ijadhadh.2011.10.002
  • 7. Esen, S. G., Altuncu, E., Üstel, F. ve Akpınar, S. (2016) Different plasma scannıng velocities effect on surface wettability properties of polypropylene by atmospheric plasma surface activation, Sakarya Üniversitesi Fen Bilimleri Dergisi, 307–316.
  • 8. Fang, Z., Xie, X., Li, J., Yang, H., Qiu, Y. ve Kuffel, E. (2009) Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air, Journal of Physics D: Applied Physics, 42(8). https://doi.org/10.1088/0022-3727/42/8/085204
  • 9. Gomez, E., Rani, D. A., Cheeseman, C. R., Deegan, D., Wise, M. ve Boccaccini, A. R. (2009) Thermal plasma technology for the treatment of wastes: A critical review, Journal of Hazardous Materials, 161(2–3), 614–626. https://doi.org/10.1016/j.jhazmat.2008.04.017
  • 10. Hwang, Y. J., An, J. S., McCord, M. G., Park, S. W. ve Kang, B. C. (2003) The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma, Fibers and Polymers, 4(4), 145–150. https://doi.org/10.1007/BF02908270
  • 11. Hwang, Y. J., Mccord, M. G., an, J. S., Kang, B. C. ve Park, S. W. (2005) Effects of Helium Atmospheric Pressure Plasma Treatment on Low-Stress Mechanical Properties of Polypropylene Nonwoven Fabrics, Textile Research Journal, 75(11), 771–778. https://doi.org/10.1177/0040517505053805
  • 12. Jinka, S., Behrens, R., Korzeniewski, C., Singh, V., Arunachalam, A., Parameswaran, S. ve Ramkumar, S. (2013) Atmospheric pressure plasma treatment and breathability of polypropylene nonwoven fabric, Journal of Industrial Textiles, 42(4), 501–514. https://doi.org/10.1177/1528083712464257
  • 13. Kehrer, M., Duchoslav, J., Hinterreiter, A., Mehic, A., Stehrer, T. ve Stifter, D. (2020), Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures, Surface and Coatings Technology, 384, 125170. https://doi.org/10.1016/j.surfcoat.2019.125170
  • 14. Kehrer, M., Rottensteiner, A., Hartl, W., Duchoslav, J., Thomas, S. ve Stifter, D. (2020) Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces, Surface and Coatings Technology, 403, 126389. https://doi.org/10.1016/j.surfcoat.2020.126389
  • 15. Ku, J. H., Jung, I. H., Rhee, K. Y. ve Park, S. J. (2013) Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites Part B: Engineering, 45(1), 1282–1287. https://doi.org/10.1016/j.compositesb. 2012.06.016
  • 16. Kwon, O. J., Myung, S. W., Lee, C. S. ve Choi, H. S. (2006) Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma, Journal of Colloid and Interface Science, 295(2), 409–416. https://doi.org/10.1016/j.jcis.2005.11.007
  • 17. Kwon, O. J., Tang, S., Myung, S. W., Lu, N. ve Choi, H. S. (2005) Surface characteristics of polypropylene film treated by an atmospheric pressure plasma, Surface and Coatings Technology, 192(1), 1–10. https://doi.org/10.1016/j.surfcoat.2004.09.018
  • 18. Leroux, F., Campagne, C., Perwuelz, A. ve Gengembre, L. (2008) Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure, Journal of Colloid and Interface Science, 328(2), 412–420. https://doi.org/10.1016/j.jcis.2008.09.062
  • 19. Massines, F., Gouda, G., Gherardi, N., Duran, M. ve Croquesel, E. (2001) The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment, Plasmas and Polymers, 6(1–2), 35–49. https://doi.org/10.1023/A:1011365306501
  • 20. Nikitin, D., Lipatova, I., Naumova, I., Sirotkin, N., Pleskunov, P., Krakovsý, I., Khalakhan, I., Choukourov, A., Titov, V. ve Agafonov, A. (2020) Immobilization of chitosan onto polypropylene foil via air/solution atmospheric pressure plasma afterglow treatment, Plasma Chemistry and Plasma Processing, 40:207–220. https://doi.org/10.1007/s11090-019-10029-2
  • 21. Oravcova, A., & Hudec, I. (2010) The influence of atmospheric pressure plasma treatment on surface properties of polypropylene films, Acta Chimica Slovaca, 3(2), 57–62.
  • 22. Palaskar, S. S., Kale, R. D. ve Deshmukh, R. R. (2020) Application of atmospheric pressure plasma for adhesion improvement in polyurethane coating on polypropylene fabrics, Journal of Coatings Technology and Research, 17(2), 485–501. https://doi.org/10.1007/s11998-019-00300-8
  • 23. Pandiyaraj, K. N., Arun Kumar, A., RamKumar, M. C., Padmanabhan, P. V. A., Trimukhe, A. M., Deshmukh, R. R. ve Jaganathan, S. K. (2018) Influence of operating parameters on development of polyethylene oxide-like coatings on the surfaces of polypropylene films by atmospheric pressure cold plasma jet-assisted polymerization to enhance their antifouling properties, Journal of Physics and Chemistry of Solids, 123(June), 76–86. https://doi.org/10.1016/j.jpcs.2018.06.007
  • 24. Penkov, O. V., Khadem, M., Lim, W. S. ve Kim, D. E. (2015) A review of recent applications of atmospheric pressure plasma jets for materials processing, Journal of Coatings Technology and Research, 12(2), 225–235. https://doi.org/10.1007/s11998-014-9638-z
  • 25. Peretich, M. A., Brien, W. F. O. ve Schetz, J. A. (2007) Plasma Torch Power Control for Scramjet Application, Lisans Tezi, Virginia Polytechnic Institute and State University, Virginia.
  • 26. Piel, A. (2010), Plasma Physics: An Introduction to Laborotory, Space and Fusion Plasmas, Springer-Verlag, Heidelberg.
  • 27. Prat, R., Suwa, T., Kogoma, M. ve Okazaki, S. (1998) Adhesive Strength Study and Surface Analysis Using Gas-Phase Chemical Reactions of Atmospheric Pressure Plasma-treated Polypropylene, Journal of Adhesion, 66(1–4), 163–182. https://doi.org/10.1080/ 00218469808009964
  • 28. Sato, T., Akiyama, H., Horiuchi, S. ve Miyamae, T. (2018) Characterization of the polypropylene surface after atmospheric pressure N2 plasma irradiation, Surface Science, 677(April), 93–98. https://doi.org/10.1016/j.susc.2018.06.010
  • 29. Shabanpour, M., Mohammadhosseini, B., Khani, M. R., Khanjani, J., Shokri, B. ve Ghassami, A. (2021) Flame versus air atmospheric gliding arc plasma treatment of polypropylene-based automotive bumpers: Physicochemical characterization and investigation of coating properties, Polymer Engineering and Science, 61(5), 1581–1593. https://doi.org/10.1002/pen.25682
  • 30. Shahidi, S., Ghoranneviss, M., Ilali, R., Karami, M. ve Miladi, M. (2016) Dyeing properties of the atmospheric pressure plasma-treated polypropylene fabric subjected to butane tetra carboxylic acid, Journal of the Textile Institute, 107(5), 636–644. https://doi.org/10.1080/00405000.2015.1054210
  • 31. Shaw, D., West, A., Bredin, J. ve Wagenaars, E. (2016) Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet, Plasma Sources Science and Technology, 25(6). https://doi.org/10.1088/0963-0252/25/6/065018
  • 32. Upadhyay, D. J., Cui, N. Y., Anderson, C. A. ve Brown, N. M. D. (2004) Surface oxygenation of polypropylene using an air dielectric barrier discharge: The effect of different electrode-platen combinations, Applied Surface Science, 229(1–4), 352–364. https://doi.org/10.1016/j.apsusc.2004.02.012
  • 33. Wang, K., Wang, W., Yang, D., Huo, Y. ve Wang, D. (2010) Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma, Applied Surface Science, 256(22), 6859–6864. https://doi.org/10.1016/ j.apsusc.2010.04.101
  • 34. Wertheimer, M. R., Thomas, H. R., Perri, M. J., Klemberg-Sapieha, J. E. ve Martinu, L. (1996) Plasmas and polymers: From laboratory to large scale commercialization. Pure and Applied Chemistry, 68(5), 1047–1053. https://doi.org/10.1351/pac199668051047
  • 35. Yaman, N., Özdogan, E., Kocum, I. C., Ayhan, H., Öktem, T. ve Seventekin, N. (2009) Improvement surface properties of polypropylene and polyester fabrics by glow discharge plasma system under atmospheric condition, Tekstil ve Konfeksiyon, 19(1), 45–51.
  • 36. Yaman, N., Özdoğan, E. ve Seventekin, N. (2013) Effect of Surrounded Air Atmospheric Plasma Treatment on Polypropylene Dyeability Using Cationic Dyestuffs, Fibers and Polymers 2013, 14(9), 1472-1477. https://doi.org/10.1007/s12221-013-1472-x
  • 37. Yaman, N., Özdoǧan, E. ve Seventekin, N. (2011) Atmospheric plasma treatment of polypropylene fabric for improved dyeability with insoluble textile dyestuff, Fibers and Polymers, 12(1), 35–41. https://doi.org/10.1007/s12221-011-0035-2
  • 38. Yáñez-Pacios, A. J. ve Martín-Martínez, J. M. (2017) Surface modification and improved adhesion of wood-plastic composites (WPCs) made with different polymers by treatment with atmospheric pressure rotating plasma jet, International Journal of Adhesion and Adhesives, 77, 204–213. https://doi.org/10.1016/j.ijadhadh.2017.06.001
  • 39. Zhang, P., Zhang, S., Kong, F., Zhang, C., Dong, P., Yan, P. ve Shao, T. (2020) Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum, Surface and Coatings Technology. https://doi.org/10.1016/j.surfcoat.2020.125511
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Kadir Ayas 0000-0002-8538-5792

Zahide Öztaş Kaplan 0000-0001-8252-5895

Kadir Çavdar 0000-0001-9126-0315

Proje Numarası 119C206
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 2 Ağustos 2021
Kabul Tarihi 1 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 3

Kaynak Göster

APA Ayas, K., Öztaş Kaplan, Z., & Çavdar, K. (2021). ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1179-1190. https://doi.org/10.17482/uumfd.977508
AMA Ayas K, Öztaş Kaplan Z, Çavdar K. ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ. UUJFE. Aralık 2021;26(3):1179-1190. doi:10.17482/uumfd.977508
Chicago Ayas, Kadir, Zahide Öztaş Kaplan, ve Kadir Çavdar. “ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 1179-90. https://doi.org/10.17482/uumfd.977508.
EndNote Ayas K, Öztaş Kaplan Z, Çavdar K (01 Aralık 2021) ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 1179–1190.
IEEE K. Ayas, Z. Öztaş Kaplan, ve K. Çavdar, “ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ”, UUJFE, c. 26, sy. 3, ss. 1179–1190, 2021, doi: 10.17482/uumfd.977508.
ISNAD Ayas, Kadir vd. “ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 1179-1190. https://doi.org/10.17482/uumfd.977508.
JAMA Ayas K, Öztaş Kaplan Z, Çavdar K. ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ. UUJFE. 2021;26:1179–1190.
MLA Ayas, Kadir vd. “ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 1179-90, doi:10.17482/uumfd.977508.
Vancouver Ayas K, Öztaş Kaplan Z, Çavdar K. ATMOSFERİK BASINÇLI PLAZMA UYGULAMASI İLE POLİPROPİLEN MALZEMELERDE YÜZEY İŞLEMLERİ. UUJFE. 2021;26(3):1179-90.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr